NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.2

by Sudhir
December 20, 2021
in 10th Maths
Reading Time: 3 mins read
0
NCERT Class 10th Maths Solutions
83
VIEWS
Share on FacebookShare on Twitter

NCERT Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.2

प्रश्न 1.
गुणनखण्ड विधि से निम्न द्विघात समीकरणों के मूल ज्ञात कीजिए:
(i) x2 – 3x – 10 = 0
(ii) 2x2 + x – 6 = 0
(iii) \(\sqrt { 2 }\) x2 + 7x + 5\(\sqrt { 2 }\) = 0
(iv) 2x2 – x + \(\frac { 1 }{ 8 } \) = 0
(v) 100x2 – 20x + 1 = 0
हल:
(i) x2 – 3x – 10 = 0
⇒ x – 5x + 2x – 10 = 0
⇒ x (x – 5) + 2 (x – 5) = 0
⇒ (x – 5) (x + 2) = 0
या तो x – 5 = 0 ⇒ x = 5
अथवा x + 2 = 0 ⇒ x = -2
अत: दत्त समीकरण के अभीष्ट मूल 5 एवं -2 हैं।

(ii) 2x2 + x – 6 = 0
⇒ 2x2 + 4x – 3x – 6 = 0
⇒ 2x (x + 2)- 3 (x + 2) = 0
⇒ (x + 2) (2x – 3) = 0
या तो x + 2 = 0 ⇒ x = -2
अथवा 2x – 3 = 0 ⇒ x = \(\frac { 3 }{ 2 } \)
अतः दत्त समीकरण के अभीष्ट मूल – 2 एवं \(\frac { 3 }{ 2 } \) हैं।

(iii) \(\sqrt { 2 }\) x2 + 2x + 5 \(\sqrt { 2 }\) = 0
⇒ \(\sqrt { 2 }\) x2 + 5x + 2x + 5\(\sqrt { 2 }\) = 0
⇒ x(\(\sqrt { 2 }\)x + 5) + \(\sqrt { 2 }\) (\(\sqrt { 2 }\)x + 5) = 0
⇒ (\(\sqrt { 2 }\) x + 5) (x + \(\sqrt { 2 }\)) = 0
या तो \(\sqrt { 2 }\) x + 5 = 0 ⇒ x = \(-\frac{5}{\sqrt{2}}\)
अथवा x + \(\sqrt { 2 }\) = 0 ⇒ x = – \(\sqrt { 2 }\)
अतः दत्त समीकरण के अभीष्ट मूल \(\frac{-5}{\sqrt{2}}\) एवं –\(\sqrt { 2 }\)

(iv) 2×2 – x + \(\frac { 1 }{ 8 } \) = 0
⇒ 16x2 – 4x – 4x + 1 = 0
⇒ 16x2 – 4x – 4x + 1 = 0
⇒ 4x(4x – 1) -1 (4x – 1) = 0
⇒ (4x – 1) (4x – 1) = 0
⇒ (4x – 1)2 = 0
⇒ 4x – 1 = 0
⇒ x = \(\frac { 1 }{ 4 } \)
अत: दत्त समीकरण के अभीष्ट मूल \(\frac { 1 }{ 4 } \) एवं \(\frac { 1 }{ 4 } \) हैं।

(v) 100x2 – 20x + 1 = 0
⇒ 100x2 – 10x – 10x + 1 = 0
⇒ 10x (10x – 1)- 1 (10x – 1) = 0
⇒ (10x – 1) (10x – 1) = 0
⇒ (10x – 1)2 = 0
⇒ 10x – 1 = 0
⇒ x = \(\frac { 1 }{ 10 } \)
अतः दत्त समीकरण के अभीष्ट मूल \(\frac { 1 }{ 10 } \) एवं \(\frac { 1 }{ 10 } \) हैं।

प्रश्न 2.
(i) जॉन और जीवन्ती दोनों के पास कुल 45 कंचे हैं। दोनों पाँच-पाँच कंचे खो देते हैं और अब उनके पास कंचों की संख्या का गुणनफल 124 है। बताइए आरम्भ में उनके पास कितने-कितने कंचे थे?
(ii) एक कुटीर उद्योग एक दिन में कुछ खिलौने निर्मित करता है। प्रत्येक खिलौने का मूल्य (₹ में) 55 में से एक दिन में निर्माण किए गए खिलौनों की संख्या को घटाने से प्राप्त संख्या के बराबर है। किसी एक दिन कुल निर्माण लागत ₹ 750 थी। उस दिन निर्माण किए गए खिलौने की संख्या ज्ञात कीजिए।
हल:
(i) मान लीजिए जॉन के पास प्रारम्भ में x कंचे थे तो जीवन्ती के पास प्रारम्भिक कंचों की संख्या = 45 – x
पाँच-पाँच कंचे खोने के बाद दोनों के पास शेष बचे कंचों की संख्या क्रमशः (x – 5) एवं (40 – X) हुई।
अब प्रश्नानुसार, (x – 5) (40 – x) = 124
⇒ 40x – x2 – 200 + 5x = 124
⇒ x2 – 45x + 324 = 0
⇒ x2 – 9x – 36x + 324 = 0
⇒ x (x – 9) – 36 (x – 9) = 0
⇒ (x – 9) (x – 36) = 0
या तो x – 9 = 0 ⇒ x = 9
अथवा x – 36 = 0 ⇒x = 36
चूँकि 9 और 36 का योग 45 और गुणनफल 324 है।
अतः उनके पास अभीष्ट 9 और 36 कंचे थे।

(ii) मान लीजिए किसी दिन निर्मित खिलौनों की संख्या : है। इसलिए प्रश्नानुसार प्रत्येक खिलौने का मूल्य = ₹ (55 – x)
खिलौनों का कुल मूल्य x (55 – x) = 750
⇒ 55x – x2 = 750
⇒ x2 – 55x + 750 = 0
⇒ x2 – 25x – 30x + 750 = 0
⇒ x (x – 25) – 30 (x – 25) = 0
⇒ (x – 25) (x – 30) = 0
या तो x – 25 = 0 ⇒ x = 25
अथवा x – 30 = 0 ⇒ x = 30
अतः उस दिन निर्मित खिलौनों की संख्या या तो 25 अथवा 30 है।

प्रश्न 3.
ऐसी दो संख्याएँ ज्ञात कीजिए जिनका योग 27 और गुणनफल 182 हो।
हल:
मान लीजिए एक संख्या x है, तो दूसरी संख्या 27 – x होगी [चूँकि योग 27 दिया है]
अब प्रश्नानुसार, x (27 – x) = 182
⇒ 27x – x2 = 182
⇒ x2 – 27x + 182 = 0
⇒ x2 – 13x – 14x + 182 = 0
⇒ x (x – 13) – 14 (x – 13) = 0
⇒ (x – 13) (x – 14) = 0
या तो x – 13 = 0 ⇒ x = 13
अथवा x – 14 = 0 ⇒ x = 14
चूँकि 13 और 14 का योग 27 और गुणनफल 182 है।
अतः अभीष्ट संख्याएँ 13 एवं 14 हैं।

प्रश्न 4.
दो क्रमागत धनात्मक पूर्णांक ज्ञात कीजिए जिनके वर्गों का योग 365 है।
हल:
मान लीजिए दो क्रमागत धनात्मक पूर्णांक x एवं x + 1 हैं, तो प्रश्नानुसार,
(x + 1)2 + (x)2 = 365
⇒ x2 + 2x + 1 + x2 = 365
⇒ 2x2 + 2x – 364 = 0
⇒ x2 + x – 182 = 0
⇒ x2 + 14x – 13x – 182 = 0
⇒ x (x + 14) – 13 (x + 14) = 0
⇒ (x + 14) (x – 13) = 0
या तो x + 14 = 0 ⇒ x = – 14 (जो धनात्मक नहीं हैं)
अथवा x – 13 = 0 ⇒ x = 13
अतः अभीष्ट धनात्मक पूर्णांक 13 एवं 14 हैं।

प्रश्न 5.
एक समकोण त्रिभुज की ऊँचाई उसके आधार से 7 cm कम है। यदि कर्ण 13 cm का हो, तो अन्य दो भुजाएँ ज्ञात कीजिए।
हल:
मान लीजिए समकोण त्रिभुज का आधार x cm है, तो त्रिभुज की ऊँचाई = (x – 7) cm (प्रश्नानुसार)
चूँकि (आधार)2 + (ऊँचाई)2 = (कर्ण)2 (पाइथागोरस प्रमेय से)
⇒ (x)2 + (x – 7)2 = (13)2 (∵ कर्ण = 17 cm दिया है)
⇒ x2 + x2 – 14x + 49 = 169
⇒ 2x2 – 14x – 120 = 0
⇒ x2 – 7x – 60 = 0
⇒ x2 – 12x + 5x – 60 = 0
⇒ x(x – 12) + 5 (x – 12) = 0
⇒ (x – 12) (x + 5) = 0
या तो x + 5 = 0 ⇒ x = -5 (जो असम्भव है)
अथवा x – 12 = 0 ⇒ x = 12 cm
⇒ ऊँचाई = x = 12 – 7 = 5 cm
अतः समकोण त्रिभुज का आधार = 12 cm तथा ऊँचाई = 5 cm है।

प्रश्न 6.
एक कुटीर उद्योग एक दिन में कुछ बर्तनों का निर्माण करता है। एक विशेष दिन यह देखा गया कि प्रत्येक नग की निर्माण लागत (₹ में) उस दिन के निर्माण किए गए बर्तनों की संख्या के दुगने से 3 अधिक थी। यदि उस दिन की कुल निर्माण लागत ₹ 90 थी, तो निर्मित बर्तनों की संख्या और प्रत्येक नग की लागत ज्ञात कीजिए।
हल:
माना विशेष दिन निर्मित बर्तनों की संख्या x है, तो प्रत्येक बर्तन की लागत = (2x + 3) प्रश्नानुसार
अब कुल लागत = लागत दर × बर्तनों की संख्या
⇒ (2x + 3) × x = 90
⇒ 2x2 + 3x = 90
⇒ 2x2 + 3x – 90 = 0
⇒ 2x2 + 15x – 12x – 90 = 0
⇒ x (2x + 15) – 6(2x + 15) = 0
⇒ (2x + 15) (x – 6) = 0
या तो 2x + 15 = 0 ⇒ x = \(\frac { -15 }{ 2 } \) (जो असम्भव है)
अथवा x – 6 = 0 ⇒ x = 6
प्रति बर्तन लागत = 2x + 3 = 2 × 6 + 3
= 12 + 3 = 15
अत: निर्मित बर्तनों की अभीष्ट संख्या = 6 तथा प्रत्येक बर्तन की लागत = ₹ 15 है।

Previous Post

NCERT Class 10 Civics Solutions Chapter 8 Challenges to Democracy

Next Post

NCERT Class 10th Science Solutions Chapter 7 नियंत्रण एवं समन्वय Important Questions and MCQs

Related

NCERT Class 10th Maths Solutions
10th Maths

Class 10 Maths EX 9.1 NCERT Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग – 100% Easy

NCERT Class 10th Maths Solutions
10th Maths

NCERT Class 10th Maths Solutions Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Examples and MCQs

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.