NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 9th Solutions 9th Maths

NCERT Class 9th Maths Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1

by Sudhir
April 2, 2022
in 9th Maths, Class 9th Solutions
Reading Time: 1 min read
0
class9SolutionsMaths
27
VIEWS
Share on FacebookShare on Twitter

NCERT Class 9th Maths Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1

यहाँ NCERT Class 9th Maths Chapter 13 Ex 13.1 का समाधान आसान तरीके से बताया गया है ताकि आप सारे सवाल बेहद सरल तरीके से बना सकें

प्रश्न 1.
1.5 m लम्बा, 1.25 m चौड़ा और 65 cm गहरा प्लास्टिक का एक डिब्बा बनाया जाता है। इसे ऊपर से खुला रखना है। प्लास्टिक शीट की मोटाई को नगण्य मानते हुए निर्धारित कीजिए कि
(i) डिब्बा बनाने के लिए आवश्यक प्लास्टिक शीट का क्षेत्रफल।
(ii) इस शीट का मूल्य, यदि 1 m² शीट का मूल्य Rs 20 है।
हल :
डिब्बा का आधार घनाभ है जिसका ऊपरी तल खुला है।
दिया है : डिब्बा की लम्बाई, l = 1.5 m, चौड़ाई b = 1.25 m और गहराई h = 65 cm = 0.65 m
(i) चूँकि डिब्बे का पार्श्व पृष्ठीय क्षेत्रफल = 2 (2 + b) × h .
पार्श्व पृष्ठीय क्षेत्रफल = 2 (1.50 + 1.25) × 0.65
= 2 × 2.75 × 0.65
= 3:575 m²
एवं आधार का क्षेत्रफल = l × b = 1.50 × 1.25 = 1.875 m²
प्लास्टिक शीट का कुल क्षेत्रफल = 3.575 + 1.875 = 5.450 m²
अतः प्लास्टिक शीट का अभीष्ट क्षेत्रफल = 5.45 m².

(ii) प्लास्टिक शीट का मूल्य = दर × क्षेत्रफल
= 20 × 5.45
= Rs 109
अतः प्लास्टिक शीट का अभीष्ट मूल्य = Rs 109.

प्रश्न 2.
एक कमरे की लम्बाई, चौड़ाई और ऊँचाई क्रमशः 5 m, 4 m और 3 m है। Rs 7.50 प्रति m² की दर से इस कमरे की दीवारों और छत पर सफेदी कराने का व्यय ज्ञात कीजिए।
हल :
दिया है : कमरे की लम्बाई l = 5 m, चौड़ाई b = 4 m और ऊँचाई h = 3 m है।
कमरे की दीवारों का पार्श्व पृष्ठ = 2 (l + b) × h = 2 (5 + 4) × 3 = 54 m²
कमरे की छत का क्षेत्रफल = l × b = 5 × 4 = 20 m²
सफेदी के लिए कुल क्षेत्रफल = 54 + 20 = 74 m²
सफेदी कराने का व्यय = दर × क्षेत्रफल = 7.50 × 74 = Rs 555
अतः सफेदी कराने का अभीष्ट व्यय = Rs 555.

प्रश्न 3.
किसी आयताकार हॉल के फर्श का परिमाप 250 m है। यदि Rs 10 प्रति मीटर² की दर से चारों दीवारों पर पेंट कराने की लागत Rs 15,000 हो, तो इस हॉल की ऊँचाई ज्ञात कीजिए।
हल :
दिया है : हॉल के फर्श का परिमाप = 250 m, दीवारों पर पेंट की दर Rs 10 प्रति m² एवं पेंट कराने का व्यय Rs 15,000
मान लीजिए हॉल की ऊँचाई h मीटर है।
चूँकि दीवारों का क्षेत्रफल = फर्श की परिमाप × ऊँचाई
= 250 × h = 250 h m²
पेंट का व्यय = दर × क्षेत्रफल = 10 × 250 h = 15,000
\(h=\frac { 15,000 }{ 2,500 }=6m\)
अतः हॉल की अभीष्ट ऊँचाई = 6 m.

प्रश्न 4.
किसी डिब्बे में भरा हुआ पेंट 9.375 m² के क्षेत्रफल पर पेंट करने के लिए पर्याप्त है। इस डिब्बे के पेंट से 22.5 cm × 10 cm × 7.5 cm विमाओं वाली कितनी ईंटें पेंट की जा सकती
हैं ?
हल :
दिया है : एक ईंट की विमाएँ 22.5 cm × 10 cm × 7.5 cm तथा डिब्बे के रंग से पेंट हो सकने वाला क्षेत्रफल 9:375 m² अर्थात् 93750 cm².
एक ईंट का पृष्ठीय क्षेत्रफल = 2 (22.5 × 10 + 10 × 7.5 + 7.5 × 22.5) cm²
= 2 (225 + 75 + 168.75) = 937.5 cm²
NCERT Class 9th Maths Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1 img-1
अतः ईंटों की अभीष्ट संख्या = 100.

प्रश्न 5.
एक घनाकार डिब्बे का एक किनारा 10 cm लम्बाई का है तथा एक अन्य घनाभाकार डिब्बे की लम्बाई, चौड़ाईं तथा ऊँचाई क्रमशः 12.5 cm, 10 cm और 8 cm है।
(i) किस डिब्बे का पार्श्व पृष्ठीय क्षेत्रफल अधिक है और कितना अधिक है ?
(ii) किस डिब्बे का कुल पृष्ठीय क्षेत्रफल कम है और कितना कम है ?
हल :
(i) पहले डिब्बे का पार्श्व पृष्ठीय क्षेत्रफल = 4a² = 4 × 10² = 400 cm²
तथा दूसरे डिब्बे का पार्श्व पृष्ठीय क्षेत्रफल = 2 (12.5 + 10) × 8 = 360 cm²
दोनों के पार्श्व पृष्ठीय क्षेत्रफलों का अन्तर = 400 – 360 = 40 cm²
अतः पहले डिब्बे का पार्श्व पृष्ठीय क्षेत्रफल दूसरे से 40 cm² अधिक है।

(ii) पहले डिब्बे का कुल पृष्ठीय क्षेत्रफल = 6a² = 6 × 10² = 600 cm²
तथा द्वितीय डिब्बे का कुल पृष्ठीय क्षेत्रफल = 2[12.5 × 10 + 10 × 8 + 8 × 12.5]
= 2 (125 + 80 + 100)
= 2 × 305
= 610
दोनों के कुल पृष्ठीय क्षेत्रफल का अन्तर = 610 – 600 = 10 cm²
अतः पहले डिब्बे का कुल पृष्ठीय क्षेत्रफल दूसरे से 10 cm² कम है।

प्रश्न 6.
एक छोटा पौधा घर (green house) सम्पूर्ण रूप से शीशे की पट्टियों से (आधार भी सम्मिलित है) घर के अन्दर ही बनाया गया है और शीशे की पट्टियों को टेप द्वारा चिपका कर रोका गया है। यह पौधा घर 30 cm लम्बा, 25 cm चौड़ा 25 cm ऊँचा है।
(i) इसमें प्रयुक्त शीशे की पट्टियों का क्षेत्रफल क्या है ?
(ii) सभी 12 किनारों के लिए कितने टेप की आवश्यकता है ?
हल :
(i) शीशे की पट्टियों का क्षेत्रफल = 2 (30 × 25 + 25 × 25 + 25 × 30)
= 2 (750 + 625 + 750)
= 2 × 2125
= 4250 cm²
अतः शीशे की पट्टियों का कुल अभीष्ट क्षेत्रफल = 4250 cm².

(ii) टेप की कुल लम्बाई = सभी कोरों की लम्बाई का योग
= 4 (30 + 25 + 25)
= 4 × 80
= 320 cm
अतः टेप की कुल अभीष्ट लम्बाई = 320 cm.

प्रश्न 7.
शान्ति स्वीट स्टाल अपनी मिठाइयों को पैक करने के लिए गत्ते के डिब्बे बनाने का ऑर्डर दे रहा था। दो मापों के डिब्बों की आवश्यकता थी। बड़े डिब्बे की माप 25 cm × 20 cm × 5 cm और छोटे डिब्बे की माप 15 cm × 12 cm × 5 cm थी। सभी प्रकार की अतिव्यापकता (overlaps) के लिए कुल पृष्ठीय क्षेत्रफल के 5% के बराबर अतिरिक्त गत्ता लगेगा। यदि गत्ते की लागत Rs 4 प्रति 1000 cm² है, तो प्रत्येक प्रकार के 250 डिब्बे बनवाने की कितनी लागत आयेगी?
हल:
बड़े डिब्बे का पृष्ठीय क्षेत्रफल = 2 (25 × 20 + 20 × 5 + 5 × 25)
= 2 (500 + 100 + 125)
= 2 × 725
= 1450 cm²
250 डिब्बों के लिए गत्ते का कुल क्षेत्रफल = 1450 × \(\frac { 105 }{ 100 }\) × 250 = 380625 cm²
और छोटे डिब्बे का पृष्ठीय क्षेत्रफल = 2 (15 × 12 + 12 × 5 + 5 × 15)
= 2 (180 + 60 + 75)
= 2 × 315
= 630 cm²
250 डिब्बों के लिए गत्ते का कुल क्षेत्रफल = 630 × \(\frac { 105 }{ 100 }\) × 250 = 165375 cm²
गत्ते का कुल क्षेत्रफल = 380625 + 165375 = 546000 cm²
डिब्बे बनवाने का व्यय = 546000 × \(\frac { 4 }{ 1000 }\) = Rs 2184
अतः डिब्बे बनवाने का अभीष्ट व्यय = Rs 2,184.

प्रश्न 8.
परवीन अपनी कार खड़ी करने के लिए एक संदूक के प्रकार के ढाँचे जैसा एक अस्थाई स्थान तिरपाल की सहायता से बनाना चाहती है जो कार को चारों ओर से और ऊपर से ढक ले। (सामने वाला फलक लटका हुआ होगा जिसे घुमाकर ऊपर किया जा सकता है) यह मानते हुए कि सिलाई के समय लगा तिरपाल का अतिरिक्त कपड़ा नगण्य होगा, आधार विमाओं 4 m × 3 m और ऊँचाई 2.5 m वाले इस ढाँचे को बनाने के लिए कितने तिरपाल की आवश्यकता होगी?
हल:
ढाँचे का पार्श्व पृष्ठीय क्षेत्रफल = 2 (4 + 3) × 2.5 = 35 m²
ढाँचे की छत का क्षेत्रफल = 4 × 3 = 12 m²
तिरपाल का कुल क्षेत्रफल = 35 + 12 = 47 m²
अतः ढाँचे को बनाने के लिए आवश्यक अभीष्ट तिरपाल = 47 m².

Previous Post

NCERT Class 9th Maths Chapter 12 हीरोन का सूत्र Extra Questions

Next Post

NCERT Class 9th Maths Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2

Related

class9SolutionsSS
9th Social Science

NCERT Solutions for Class 9 Social Science Economics Chapter 1 पालमपुर गाँव की कहानी

class9SolutionsSS
9th Social Science

NCERT Solutions for Class 9 Social Science Economics Chapter 4 भारत में खाद्य सुरक्षा

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.