NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6

by Sudhir
December 28, 2021
in 10th Maths, Class 10th Solutions
Reading Time: 6 mins read
0
NCERT Class 10th Maths Solutions
6
VIEWS
Share on FacebookShare on Twitter

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 6 त्रिभुज Ex 6.6. These solutions are based on new NCERT Syllabus.

NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6

प्रश्न 1.
संलग्नआकृति 6.48 में PS कोण QPR कासमद्विभाजकहै। सिद्ध कीजिए \(\frac{Q S}{S R}=\frac{P Q}{P T}\) है।
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 1
ज्ञात है : ∆PQR में शीर्ष कोण ∠QPR का समद्विभाजक PS, आधार QR को S बिन्दु पर प्रतिच्छेद करता है।
रचना : QP को आगे बढ़ाया। बिन्दु R से TR || PS रेखाखण्ड खींचा जो QP को बिन्दु T पर प्रतिच्छेद करता है (देखिए आकृति 6.49)।
चूँकि PS || TR को QT तिर्यक रेखा प्रतिच्छेद करती है।
⇒ ∠QPS = ∠PTR …(1)
चूँकि PS || TR को तिर्यक रेखा PR प्रतिच्छेद करती है।
⇒ ∠SPR = ∠PRT …(2)
[एकान्तर कोण हैं।]
⇒ ∠QPS = ∠SPR …(3)
⇒ [PS, ∠QPR का समद्विभाजक दिया है]
⇒ ∠PTR = ∠PRT [समीकरण (1), (2) एवं (3) से]
⇒ PT = PR …(4) [समान कोणों की सम्मुख भुजाएँ हैं|
अब ∆QRT में, PS || TR
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 2
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 3

प्रश्न 2.
संलग्न आकृति 6.50 में D त्रिभुज ABC के कर्ण AC पर स्थित एक बिन्दु है जबकि BD ⊥ AC तथा DM ⊥ BC और DN ⊥ AB. सिद्ध कीजिए कि :
(i) DM² = DN.MC
(ii) DN² = DM.AN.
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 4
चूँकि DMBN एक आयत है
[∠M = ∠B = ∠N = 90° दिया है]
⇒ DM = BN एवं DN = MB
(i) ∵ समकोण ∆BDC के समकोण वाले शीर्ष D से DM ⊥ CB खींचा गया है।
⇒ ∆DMC ~ ∆BMD [प्रमेय : 6.7 से]
⇒ \(\frac{D M}{M B}=\frac{M C}{D M}\) [समरूप त्रिभुजों के प्रगुण]
⇒ DM² = MB.MC
⇒ DM² = DN.MC [∵ DN = MB समीकरण (1) से]
इति सिद्धम्

(ii) समकोण ∆ADB से समकोण वाले शीर्ष D से DN I AB खींचा गया है।
⇒ ∆DNB ~ ∆AND [प्रमेय : 6.7 से]
⇒ \(\frac{D N}{A N}=\frac{B N}{D N}\) [समरूप त्रिभुजों के प्रगुण से]
⇒ DN² = BN. AN
⇒ DN² = DM.AN. [∵ BN = DM समीकरण (1) से]
इति सिद्धम्

प्रश्न 3.
संलग्न आकृति 6.51 में ABC एक त्रिभुज है, जिसमें ∠ABC > 90° है तथा AD ⊥ CB है। सिद्ध कीजिए कि AC² = AB² + BC² + 2 BC.BD है।
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 5
ज्ञात है : एक अधिक कोण ∆ABC, जिसका कोण B अधिक कोण है तथा AD ⊥ CB.
∵ समकोण ∆ADB में, ∠ADB में समकोण है
⇒ AD² + DB² = AB² …(1) [पाइथागोरस प्रमेय से]
∵ समकोण ∆ADC में, ∠ADC समकोण है
⇒ AC² = AD² + DC² [पाइथागोरस प्रमेय से]
⇒ AC² = AD² + (DB + BC)²
⇒ AC² = AD² + DB² + BC² + 2DB.BC …..(2)
⇒ AC² = AB² + BC² + 2DB.BC. [समीकरण (1) एवं (2) से)
इति सिद्धम्

प्रश्न 4.
संलग्न आकृति 6.52 में ABC एक त्रिभुज है जिसमें ∠ABC < 90° तथा AD ⊥ BC है। सिद्ध कीजिए कि AC² = AB² BC² – 2BC.BD है।
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 6
ज्ञात है : एक न्यूनकोण ∆ABC, जिसका कोण B न्यूनकोण है तथा AD ⊥ BC.
∵ समकोण ∆ADB में, ∠ADB समकोण है
⇒ AD² + BD² = AB² …(1) [पाइथागोरस प्रमेय से]
∵ समकोण ∆ADC में, ∠ADC समकोण है
⇒ AC² = AD² + DC² [पाइथागोरस प्रमेय से]
⇒ AC² = AD² + (BC – BD)²
⇒ AC² = AD² + BC² + BD² – 2BC. BD
⇒ AC² = AD² + BD² + BC² – 2BC.BD …(2)
⇒ AC² = AB² + BC² – 2BC.BD. [समीकरण (1) और (2) से]
इति सिद्धम्

NCERT Solutions

प्रश्न 5.
संलग्न आकृति 6.53 में AD ∆ABC की माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि:
(i) AC² = AD² + BC.DM + \(\left(\frac{B C}{2}\right)^{2}\)
(ii) AB² = AD² – BC.DM + \(\left(\frac{B C}{2}\right)^{2}\)
(iii) AC² + AB² = 2AD² + \(\frac { 1 }{ 2 }\) BC²
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 7
(i) ∵ समकोण ∆AMD में, ∠AMD समकोण है
⇒ AM² + MD² = AD² …(1) [पाइथागोरस प्रमेय से]
∵ समकोण ∆AMC में, ∠AMC समकोण है
⇒ AC² = AM² + MC² [पाइथागोरस प्रमेय से]
⇒ AC² = AM² + (MD + DC)²
⇒ AC² = AM² + MD² + DC² + 2MD.DC
⇒ AC² = AMD + MD² + \(\left(\frac{B C}{2}\right)^{2}\) + BC.DM …(2)
[DC = \(\frac { BC }{ 2 }\) , BC = 2 DC]
⇒ AC² = AD² + \(\left(\frac{B C}{2}\right)^{2}\) + BC.DM [समीकरण (1) और (2)]
⇒ AC² = AD² + BC.DM + \(\left(\frac{B C}{2}\right)^{2}\)
इति सिद्धम्

(ii) ∵ समकोण ∆AMD में, ∠ADM समकोण है
⇒ AM² + MD² = AD² …(1)[पाइथागोरस प्रमेय से]
∵ समकोण ∆AMB में ∠AMB समकोण है
⇒ AB² = AM² + BM² [पाइथागोरस प्रमेय से]
⇒ AB² = AM² + (BD – MD)²
⇒ AB² = AM² + BD² + MD² – 2BD.MD.
⇒ AB² = AM² + MD² – 2BD.DM + BD²
⇒ AB² = AM² + MD² – BC.DM + \(\left(\frac{B C}{2}\right)^{2}\) ….( 2 )
[2BD = BC ⇒ BD = \(\frac { BC }{ 2 }\) ]
⇒ AB² = AD² – BC.DM + \(\left(\frac{B C}{2}\right)^{2}\)
इति सिद्धम्

(iii) अधिककोण ∆ADC में,
चूँकि AC² = AD² + BC.DM + \(\left(\frac{B C}{2}\right)^{2}\) …..(1)
[भाग (i) में सिद्ध कर चुके हैं।]
एवं न्यूनकोण त्रिभुज ADB में,
चूँकि AB² = AD² – BC.DM + \(\left(\frac{B C}{2}\right)^{2}\) …(2)
[भाग (ii) में सिद्ध कर चुके हैं।
⇒ AC² + AB² = 2AD² + 2 \(\left(\frac{B C}{2}\right)^{2}\) [समीकरण (1) एवं (2) से]
⇒ AC² + AB² = 2AD² + 2 \(\frac{B C^{2}}{4}\)
⇒ AC² + AB² = 2AD² + \(\frac { 1 }{ 2 }\) BC²
इति सिद्धम्

प्रश्न 6.
सिद्ध कीजिए कि एक समान्तर चतुर्भुज के विकर्णों के वर्गों का योग उसकी भुजाओं के वर्गों के योग के बराबर होता है।
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 8
मान लीजिए ABCD एक समान्तर चतुर्भुज है। A से AE ⊥ BC एवं D से DF ⊥ BC खींचिए। ABCD के विकर्ण AC और BD हैं। यहाँ AEFD एक आयत है।
समकोण ∆AEB और ∆DFC में,
∵कर्ण AB = कर्ण DC
[समान्तर चतुर्भुज की सम्मुख भुजाएँ]
∵भुजा AE = भुजा DF [आयत की सम्मुख भुजाएँ हैं]
⇒ ∆AEB ≅ ∆DFC [RHS सर्वांगसमता]
⇒ BE = CF …(1) [CPCT]
अधिककोण ∆DCB में ∠DCB अधिककोण है
⇒BD² = BC² + CD² + 2BC.CF .(2)[अधिककोण उपप्रमेय से]
∵न्यूनकोण ∆ABC में ∠ABC न्यूनकोण है
⇒AC² = AB² + BC² – 2 BE.BC [न्यूनकोण उपप्रमेय से]
⇒AC² = AB² + DA² – 2 BC.CF …(3)
[∵ BE = CF समीकरण (1) तथा BC = AD समान्तर ABCD की सम्मुख भुजाएँ हैं।]
⇒AC² + BD² = AB² + DA² + BC² + CD²
[समीकरण (2) + समीकरण (3) से]
⇒AC² + BD² = AB² + BC² + CD² + DA²
अतः किसी समान्तर चतुर्भुज में उसके विकर्णों के वर्गों का योग उसकी भुजाओं के वर्गों के योग के बराबर होता है।
इति सिद्धम्

प्रश्न 7.
संलग्न आकृति 6.55 में एक वृत्त की दो जीवाएँ AB और CD , परस्पर बिन्दु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि:
(i) ∆APC ~ ∆DPB
(ii) AP.PB = CP.DP.
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 9
(i) ∆APC और ∆DPB में,
∠ACP = ∠DBP [एक ही वृत्तखण्ड के कोण हैं]
∠CAP = ∠BDP [एक ही वृत्तखण्ड के कोण हैं]
∠APC = ∠DPB [शीर्षाभिमुख कोण हैं
∆APC ~ ∆DPB. [AAA समरूपता]
इति सिद्धम्

(ii) :.. ∆APC ~ ∆DPB. [भाग (i) में सिद्ध कर चुके हैं।]
\(\frac{A P}{D P}=\frac{C P}{B P}\) [समरूप त्रिभुजों के प्रगुण से]
AP.PB = CP.DP.
इति सिद्धम्

प्रश्न 8.
संलग्न आकृति 6.56 में एक वृत्त की दो जीवाएँ AB और CD बढ़ाने पर परस्पर बिन्दु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि:
(i) ∆PAC ~ ∆PDB
(ii) PA.PB = PC.PD
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 10
∵∠PCA + ∠ACD = 180° …(1) रैखिक युग्म है|
∵∠ACD + ∠ABD = 180° ….(2) [चक्रीय चतुर्भुज के सम्मुख कोण]
⇒ ∠PCA = ∠ABD [समीकरण (1) एवं (2) से]
⇒ ∠PCA = ∠PBD …(3) [चित्रानुसार उभयनिष्ठ हैं]

(i) अब APAC एवं APDB में,
∵ ∠PCA = ∠PBD [समीकरण (3) से]
∵ ∠APC = ∠BPD [चित्रानुसार उभयनिष्ठ हैं|
⇒∆PAC ~ ∆PDB. [AA समरूपता]
इति सिद्धम्

(iii) ∵ ∆PAC ~ ∆PDB [भाग (i) में सिद्ध कर चुके हैं।]
⇒ \(\frac{P A}{P D}=\frac{P C}{P B}\) [समरूप त्रिभुजों के प्रगुण]
⇒ PA.PB = PC.PD.
इति सिद्धम्

NCERT Solutions

प्रश्न 9.
संलग्न आकृति 6.57 में त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार है कि \(\frac{B D}{C D}=\frac{A B}{A C}\) है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 11
दिया है : AABC की भुजा BC पर बिन्दु D इस प्रकार कि
\(\frac{B D}{C D}=\frac{A B}{A C}\) …(1)
रचना : AD को बढ़ाइए। CE || AD रेखा खींचिए जो AD को बिन्दु E पर प्रतिच्छेद करती है।
अब ∆ABD और ∆ECD में,
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 12
∠ABD = ∠ECD
[AB || CE एवं BD तिर्यक रेखा है।]
∠ADB = ∠EDC [शीर्षाभिमुख कोण है]
∆ABD ~ ∆ECD [AA समरूपता]
\(\frac{B D}{C D}=\frac{A B}{E C}\) …(2)
[समरूप त्रिभुजों के प्रगुण]
\(\frac{A B}{A C}=\frac{A B}{E C}\)
[समीकरण (1) एवं (2) से]
⇒ AC = EC
⇒ ∠CAD = ∠CED …(3) [बराबर भुजाओं के सम्मुख कोण]
लेकिन ∠BAD = ∠CED …(4) [समरूप ∆ABD एवं ∆ECD के संगत कोण हैं|
∴ ∠BAD = ∠CAD [समीकरण (3) एवं (4) से]
अतः AD कोण BAC का समद्विभाजक है।
इति सिद्धम्

प्रश्न 10.
नाजिया एक नदी की धारा में मछलियाँ पकड़ रही है। इसकी मछली पकड़ने वाली छड़ का सिरा पानी की सतह से 1.8 m ऊपर है तथा डोरी के निचले सिरे से लगा काँटा पानी की सतह पर इस प्रकार स्थित है कि उसकी नाजिया से दूरी 3.6 m है और छड़ के सिरे के ठीक नीचे पानी के सतह पर स्थित बिन्दु से उसकी दूरी 2.4 m है। यह मानते हुए कि उसकी डोरी (उसकी छड़ के सिरे से काँटे तक) तनी हुई है, उसने कितनी डोरी बाहर निकाली हुई है। (देखिए संलग्न आकृति) यदि वह डोरी को 5 cm/s की दर से अन्दर खींचे, तो 12 सेकण्ड के बाद नाजिया की काँटे
से क्षैतिज दूरी कितनी होगी?
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 13
हल :
NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.6 14
मान लीजिए कि नाजिया की प्रारम्भिक स्थिति P पर छड़ का सिरा Q पर, काँटे की स्थिति R पर तथा Q से PR पर डाले गये लम्ब के पाद की स्थिति M पर है (आकृति 6.60) । तब प्रश्नानुसार,
PR = 3.6, QM = 1.8 m एवं RM = 2.4 m
PM = PR – RM = 3.6 – 2.4 = 1.2 m
मान लीजिए कि डोरी की वर्तमान लम्बाई = l m तो समकोण ∆QMR में, ∠QMR समकोण है
QR² = RM² + QM² [पाइथागोरस प्रमेय से]
l² = (2.4)² + (1.8)²
= 5.76 + 3.24
= 9.00
l = √9 = 3 m
5 cm/s की चाल से 12 s में डोरी की लम्बाई में कमी
= 12 x 5
= 60 cm
= 0.6 m
डोरी की नई लम्बाई QS = 3.00 – 0.60
= 2.40 m
अब समकोण ∆QMS में, ∠QMS समकोण है
(SM)² = (QS)² – (QM)² [पाइथागोरस प्रमेय से]
(SM)² = (2.4)² – (1.8)²
= 5.76 – 3.24
= 2.52
SM = √2.52
= 1.59 m
नाजिया की काँटे से नवीन दूरी = SP = SM + MP
= 1.59 + 1.2
= 2.79 m
अतः नाजिया की काँटे से अभीष्ट दूरी = 2.79 m है।

Previous Post

NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Ex 6.5

Next Post

NCERT Class 10th Maths Solutions Chapter 7 Coordinate Geometry Ex 7.1

Related

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.