NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs

by Sudhir
December 4, 2021
in 10th Maths, Class 10th Solutions
Reading Time: 16 mins read
0
NCERT Class 10th Maths Solutions
15
VIEWS
Share on FacebookShare on Twitter

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs. These solutions are based on new NCERT Syllabus.

Table of Contents

Toggle
  • NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs
    • NCERT Class 10th Maths Chapter 3 अतिरिक्त परीक्षोपयोगी प्रश्न
    • NCERT Class 10th Maths Chapter 3 वस्तुनिष्ठ प्रश्न

NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs

NCERT Class 10th Maths Chapter 3 अतिरिक्त परीक्षोपयोगी प्रश्न

NCERT Class 10th Maths Chapter 3 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
4 पैन एवं 4 पेंसिल बॉक्स का मूल्य ₹ 100 है। एक पैन का तीन गुना मूल्य एक पेंसिल बॉक्स . के मूल्य से ₹ 15 अधिक है। रैखिक युगपत समीकरण युग्म बनाइए तथा एक पैन एवं एक पेंसिल बॉक्स का मूल्य ज्ञात कीजिए।
हल:
मान लीजिए एक पैन का मूल्य ₹x एवं एक पेंसिल बॉक्स का मूल्य ₹y हैं तो प्रश्नानुसार,
4x +4y = 100 ⇒ x + y = 25 ….(1)
एवं 3x = y + 15 ⇒ 3x – y = 15 ….(2)
⇒ 4x = 40 [समीकरण (1) + समीकरण (2) से]
⇒ x = \(\frac { 40 }{ 4 } \) = 10
अब x का मान समीकरण (1) में रखने पर,
10 + y = 25 ⇒ y = 25 – 10 = 15
अतः एक पैन का अभीष्ट मूल्य ₹ 10 एवं एक पेंसिल बॉक्स का अभीष्ट मूल्य ₹ 15 है।

प्रश्न 2.
5 संतरे और 3 सेबों का मूल्य ₹ 35 है तथा 2 संतरे और 4 सेबों का मूल्य ₹ 28 है तब एक संतरा तथा 1 सेब का मूल्य ज्ञात कीजिए। (2019)
हल:
(निर्देश : उपर्युक्त प्रश्न की तरह हल करें।)
[उत्तर: एक संतरे का अभीष्ट मूल्य = ₹4 एवं एक सेब का मूल्य = ₹ 5]

प्रश्न 3.
अंकित अपने घर के लिए 14 किलोमीटर की दूरी आंशिक रूप से रिक्शे के द्वारा एवं आंशिक रूप से बस के द्वारा तय करती है। वह 2 km रिक्शा के द्वारा तथा शेष दूरी बस के द्वारा तय ‘ करने में आधा घण्टा लेता है। दूसरी ओर यदि उसने 4 km दूरी रिक्शा से तथा शेष दूरी बस से तय की होती तो उसे 9 मिनट अधिक लगते। रिक्शा एवं बस की चाल ज्ञात कीजिए।
हल:
मान लीजिए रिक्शा की चाल x km/hr एवं बस की चाल y km/hr हो तो प्रश्नानुसार,
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 1
समीकरण (2) एवं (3) में \(\frac { 1 }{ x } \) = p एवं \(\frac { 1 }{ y } \) = q रखने पर,
4p + 10q = \(\frac { 13 }{ 20 } \) ….(4)
4p + 24q = 1 ….(5)
⇒ 14q = 1 – \(\frac { 13 }{ 20 } \) = \(\frac { 7 }{ 20 } \) [समीकरण (5)- समीकरण (4) से]
\(\Rightarrow \quad \quad q=\frac{7}{14 \times 20}=\frac{1}{40} \Rightarrow \frac{1}{y}=q=\frac{1}{40} \Rightarrow y=40 \mathrm{km} / \mathrm{hr}\)
q का मान समीकरण (4) में रखने पर,
\(4 p+10 \times \frac{1}{40}=\frac{13}{20} \Rightarrow 4 p=\frac{13}{20}-\frac{1}{4}=\frac{8}{20}\)
\(p=\frac{8}{4 \times 20}=\frac{1}{10} \Rightarrow \frac{1}{x}=p=\frac{1}{10} \Rightarrow x=10 \mathrm{km} / \mathrm{hr}\)
अतः रिक्शा एवं बस की अभीष्ट चाल क्रमश: 10 km/hr एवं 40 km/hr है।

प्रश्न 4.
एक मोटर वोट 30 km की दूरी जल धारा के विरुद्ध एवं 28 km की दूरी धारा की दिशा में तय करने में 7 घण्टे का समय लेती है। यह 21 km की दूरी धारा के विपरीत जाने एवं धारा की दिशा में वापस आने में कुल समय 5 घटे में तय कर सकती है। स्थिर जल में नाव की चाल एवं जल धारा की चाल ज्ञात कीजिए।
हल:
माना लीजिए स्थिर जल में नाव की चाल x km/hr एवं जल धारा की चाल y km/hr है, तो प्रश्नानुसार,
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 2
30p + 28q = 7 ….(3) × 3
एवं 21p + 21q = 5 …(4) × 4
⇒ 90p + 84q = 21 …(5)
एवं 84p + 84q = 20 ….(6)
⇒ 6p = 1 [समीकरण (5) – समीकरण (6) से]
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 3
x का मान समीकरण (8) में रखने पर,
10 + y = 14 ⇒ y = 14 – 10 = 4
अतः स्थिर जल में नाव की अभीष्ट चाल 10 km/hr एवं जल धारा की अभीष्ट चाल 4 km/hr है।

प्रश्न 5.
दो वर्ष पूर्व सलीम की उम्र उसकी पुत्री की उम्र की तीन गुनी थी और 6 वर्ष पश्चात् उसकी उम्र उसकी पुत्री की उम्र के दूने से 4 वर्ष अधिक हो जाएगी। दोनों की वर्तमान उम्र ज्ञात कीजिए।
हल:
मान लीजिए सलीम की वर्तमान उम्र x वर्ष एवं उसकी पुत्री की वर्तमान उम्र y वर्ष है। तो प्रश्नानुसार,
x – 2 = 3 (y – 2)
⇒ x – 3 y = -4 ….(1)
एवं (x + 6) = 2 (y + 6) + 4
⇒ x – 2y = 12 + 4 – 6 = 10
⇒ y = 14 [समीकरण (2) – समीकरण (1) से]
y का मान समीकरण (2) में रखने पर,
x – 2 × 14 = 10
⇒ x – 28 = 10
⇒ x = 28 + 10 = 38
अतः सलीम की अभीष्ट वर्तमान उम्र 38 वर्ष एवं उसकी पुत्री की अभीष्ट वर्तमान उम्र 14 वर्ष है।

प्रश्न 6.
एक पिता की उम्र अपने दोनों पुत्रों की उम्र के योग की दो गुनी है। 20 वर्ष बाद उसकी उम्र अपने दोनों पुत्रों की उम्र के योग के बराबर हो जाएगी। पिता की वर्तमान उम्र ज्ञात कीजिए।
हल:
मान लीजिए पिता की वर्तमान आयु x वर्ष है और उसके दोनों पुत्रों की उम्र का योग y वर्ष है तो प्रश्नानुसार,
x = 2y ⇒ x – 2y = 0 ….(1)
चूँकि 20 वर्ष बाद पिता की उम्र में तो 20 वर्ष की वृद्धि होगी जबकि दोनों पुत्रों की उम्र के योग में 20 + 20 = 40 वर्ष की वृद्धि होगी अतः
x + 20 = y + 40
⇒ x – y = 40 – 20 = 20 ….(2)
⇒ y = 20 [समीकरण (2) – समीकरण (1) से]
y का मान समीकरण (1) में रखने पर,
x – 2 × 20 = 0 ⇒ x – 40 = 0
⇒ x = 40
अतः पिता की अभीष्ट उम्र 40 वर्ष है।

प्रश्न 7.
दो संख्याओं का अनुपात 5 : 6 है यदि प्रत्येक में से 8 घटा दिया जाए तो उनका अनुपात 4 : 5 हो जाएगा। वे संख्याएँ ज्ञात कीजिए।
हल:
मान लीजिए कि वे संख्याएँ x एवं y है, तो प्रश्नानुसार
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 4
समीकरण (1) को 4 से एवं समीकरण (2) को 5 से गुणा करने पर,
24x – 20y = 0 ….(3)
एवं 25x – 20y = 40 ….(4)
⇒ x = 40 [समीकरण (4) – समीकरण (3) से]
x का मान समीकरण (1) में रखने पर,
6 × 40 – 5y = 0
⇒ 240 – 5y = 0
⇒ 5y = 240
⇒ y = \(\frac { 240 }{ 5 } \) = 48
अत: अभीष्ट संख्याएँ 40 एवं 48 हैं।

प्रश्न 8.
दो परीक्षा कक्षों A एवं B में कुछ छात्र हैं यदि कक्ष A से 10 छात्र कक्ष B में स्थानान्तरित कर दिए जाएँ तो दोनों कक्षों में छात्र संख्या बराबर हो जायेगी। लेकिन यदि 20 छात्र कक्ष B से कक्ष A में स्थानान्तरित कर दिए जाएँ तो कक्षA की छात्र संख्या कक्ष B की छात्र संख्या की दूनी हो जाएगी। दोनों कक्षों में छात्रों की संख्या ज्ञात कीजिए।
हल:
मान लीजिए कक्ष A में छात्र संख्या x एवं कक्ष B में छात्र संख्या y है। तो प्रश्नानुसार,
(x – 10) = (y + 10)
⇒ x – y = 20 ….(1)
एवं (x + 20) = 2 (y – 20)
⇒ x + 20 = 2y – 40
⇒ x – 2y = – 40 – 20 = – 60 ….(2)
समीकरण (1) में से समीकरण (2) को घटाने पर,
y = 20 + 60 = 80
y का मान समीकरण (1) में रखने पर,
x – 80 = 20 ⇒ x = 80 + 20 = 100
अतः परीक्षा कक्ष A में अभीष्ट छात्र संख्या 100 एवं परीक्षा कक्ष B में अभीष्ट छात्र संख्या 80 है।

प्रश्न 9.
एक दुकानदार किराए पर पुस्तक पढ़ने को देती है। वह प्रथम दो दिन के लिए एक निश्चित किराया तथा अतिरिक्त दिनों के लिए प्रतिदिन के हिसाब से अतिरिक्त किराया वसूल करती है। लतिका ने 6 दिन के लिए पुस्तक ली जिसके लिए उसे ₹ 22 देने पड़े तथा आनन्द ने पुस्तक को 4 दिन तक रखा और उसने ₹16 का भुगतान किया। नियत (निश्चित) किराया एवं प्रत्येक अतिरिक्त दिन का किराया ज्ञात कीजिए।
हल:
माम लीजिए प्रथम दो दिन का नियत किराया ₹x एवं अतिरिक्त दिन के लिए प्रतिदिन किराया ₹y है, तो प्रश्नानुसार,
x + 4y = 22 …(1) [अतिरिक्त 6 – 2 = 4 दिन]
एवं x + 2y = 16 ….(2) [अतिरिक्त 4 – 2 = 2 दिन]
⇒ 2y = 6 [समीकरण (1) – समीकरण (2) से]
⇒ y = \(\frac { 6 }{ 2 } \) = 3
y का मान समीकरण (1) में रखने पर,
x + 4 × 3 = 22
⇒ x + 12 = 22
⇒ x = 22 – 12 = 10
अतः पुस्तकों का नियत अभीष्ट किराया ₹ 10 एवं अतिरिक्त दिनों के लिए प्रतिदिन अभीष्ट किराया ₹3 है।

प्रश्न 10.
एक प्रतियोगी परीक्षा में प्रत्येक सही उत्तर के लिए 1 अंक मिलता है लेकिन प्रत्येक गलत उत्तर के लिए \(\frac { 1 }{ 2 } \) अंक काट लिया जाता है। जयन्ती ने 120 प्रश्नों के उत्तर दिए और कुल 90 अंक प्राप्त किए। उसने कितने प्रश्नों के सही उत्तर दिए ?
हल:
मान लीजिए कि जयन्ती ने x प्रश्नों के सही उत्तर तथा y प्रश्नों के गलत उत्तर दिए।
तो प्रश्नानुसार,
x + y = 120 ….(1)
एवं x – \(\frac { 1 }{ 2 } \) y = 90
⇒2x – y = 180 ….(2)
समीकरण (2) में समीकरण (1) को जोड़ने पर,
3x = 300 ⇒ x = \(\frac { 300 }{ 3 } \) = 100
अतः जयन्ती ने अभीष्ट 100 प्रश्नों के सही उत्तर दिए।

प्रश्न 11.
ग्राफीय (ज्यामितीय) विधि से ज्ञात कीजिए कि निम्न रैखिक युगपद समीकरण युग्म संगत हैं या अंसगत/अगर संगत है तो उनको हल कीजिए:
(i) 3x + y + 4 = 0;6x – 2y + 4 = 0
(ii) x – 2y = 6; 3x – 6y = 0
(iii) x + y = 3; 3x + 3y = 9
हल:
(i) 3x + y + 4 = 0
⇒ y = – 3x – 4
जब x = 0 ⇒ y = -4
और जब x = – 2
⇒ y = -3(-2)-4
= 6 – 4 = 2
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 5
एवं 6x – 2y + 4 = 0 ….(2)
⇒ 3x – y + 2 = 0
⇒ y = 3x + 2
जब x = 0 ⇒ y = 2
और जब x = -1 ⇒ y = 3 (-1)+ 2 = – 3 + 2 = – 1
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 6
आकृति : 3.12

चूँकि ग्राफ परस्पर बिन्दु P पर प्रतिच्छेद करते हैं।
अत: रैखिक युगपद समीकरण युग्म संगत हैं तथा अभीष्ट हल x = -1 एवं y = -1 है।

(ii) x – 2y = 6
⇒ y = \(\frac { x-6 }{ 2 } \)
जब x = 0 ⇒ y = -3
और जब x = 2
⇒ y = \(\frac { 2-6 }{ 2 } \) = \(\frac { -4 }{ 2 } \) = -2
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 7
एवं 3x – 6y = 0
⇒ 6y = 3x
⇒ y = \(\frac { 1 }{ 2 } \) x
जब x = 0 ⇒ y = 0
और जब x = 4 ⇒ y = 2
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 10
आकृति : 3.13
चूँकि ग्राफ परस्पर प्रतिच्छेद नहीं करते अर्थात् समानान्तर हैं।
अत: रैखिक युगपद समीकरण युग्म असंगत है।
(iii) x + y = 3 …(1)
⇒ y = 3 – x
जब x = 0 तब y = 3 – 0 = 3
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 11
और जब x = 3 तब y = 3 – 3 = 0
एवं 3x +3y = 9 …(2)
x+ y = 3 .
y = 3 – x
जब x = 0 ⇒ y = 3 – 0 = 3
और जब x = 3 ⇒y = 3 = 0
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 12
आकृति : 3.14
चूँकि ग्राफ संपाती हैं तथा y = 3 -x से y का मान x के मान पर आश्रित है।
अत: रैखिक युगपद समीकरण युग्म आश्रित संगत है तथा इसके अनन्तशः अनेक हल होंगे।

NCERT Solutions

NCERT Class 10th Maths Chapter 3 लघु उत्तरीय प्रश्न

प्रश्न 1.
λ के किस मान के लिए रैखिक समीकरण युग्म λx + y = λ2 एवं x + λy = 1
(i) का कोई भी हल नहीं है?
(ii) अनन्तशः अनेक हल हैं?
(iii) एक अद्वितीय हल है?
हल:
(i) कोई हल नहीं होने के लिए:
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 13
अत: λ का अभीष्ट मान-1 है।

(ii) अनन्तशः अनेक हल के लिए:
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 14
अत: λ का अभीष्ट मान 1 है।

(iii) एक अद्वितीय हल होने के लिए:
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 15
अतः ± 1 को छोड़कर का मान प्रत्येक वास्तविक संख्या होगी।

प्रश्न 2.
k के किस मान के लिए समीकरण युग्म kx + 3y = k – 3 एवं 12x + ky = k का कोई हल नहीं होगा?
हल:
kx + 3y = k – 3 ….(1)
12x + ky = k …..(2)
अतः k का अभीष्ट मान -6 है।
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 16

प्रश्न 3.
a एवं b के किस मान के लिए निम्न समीकरण युग्म के अनन्तशः अनेक हल होंगे :
x + 2y = 1 एवं (a – b) x + (a + b)y = a + b – 2
हल:
x + 2y = 1 ….(1)
(a – b)x + (a + b)y = a + b – 2 ….(2)
अनन्तशः अनेक हल होने के लिए,
\(\frac{1}{a-b}=\frac{2}{a+b}=\frac{1}{a+b-2}\)
⇒ a + b = 2a – 2b ⇒ a – 3b = 0 ….(3)
एवं 2a + 2b – 4 = a + b → a + b = 4 ….(4)
⇒ 4b = 4 ⇒ b = \(\frac { 4 }{ 4 } \) = 1 [समीकरण (4) – समीकरण (3) से]
b का मान समीकरण (4) में रखने पर,
a + 1 = 4 ⇒ a = 4 – 1 = 3
अत: a एवं के अभीष्ट मान क्रमशः 3 एवं 1 हैं।

प्रश्न 4.
निम्न प्रश्न क्रमांक (i) से (iv) में p का मान तथा (v) में p एवं के मान ज्ञात कीजिए:
(i) 3x – y – 5 = 0 एवं 6x – 2y – p = 0. यदि इन समीकरणों से प्रदर्शित रेखाएँ परस्पर समानान्तर हों।
(ii) -x + py = 1 एवं px – y = 1, यदि समीकरण युग्म का कोई हल न हो।
(iii) – 3x + 5y = 7 एवं 2px -3y = 1, यदि इस समीकरण युग्म से प्रदर्शित रेखाएँ परस्पर एक अद्वितीय बिन्दु पर प्रतिच्छेद करती हों।
(iv) 2x + 3y – 5 = 0 एवं px – 6y – 8 = 0 यदि समीकरण युग्म का अद्वितीय हल हो।
(v) 2x + 3y = 7 एवं 2px + py = 28 – qy, यदि समीकरण युग्म के अनन्तशः अनेक हल हों।
हल:
(i) 3x – y – 5 = 0 ….(1)
6x – 2y – p = 0 …..(2)
समीकरण युग्म द्वारा प्रदर्शित रेखाएँ समानान्तर होंगी,
यदि \(\frac { 3 }{ 6 } \) = \(\frac { 1 }{ 2 } \) ≠ \(\frac { 5 }{ p } \)
⇒ p ≠ 10
अतः p का अभीष्ट मान कोई भी वास्तविक संख्या होगी केवल 10 को छोड़कर।

(ii) -x + py = 1 ….(1)
px – y = 1 ….(2)
समीकरण युग्म का कोई भी हल नहीं होगा यदि
\(\frac{-1}{p}=\frac{p}{-1} \neq \frac{1}{1}\)
⇒ p2 = 1 ⇒ p = ± 1 लेकिन p ≠ -1
अतः p का अभीष्ट मान 1 होगा।

(iii) -3x + 5y = 7 ….(1)
2px – 3y = 1 ….(2)
समीकरण युग्म द्वारा प्रदर्शित रेखाएँ एक अद्वितीय बिन्दु पर परस्पर प्रतिच्छेद करेंगी यदि
\(\frac{-3}{2 p} \neq \frac{5}{-3} \Rightarrow 10 p \neq 9 \Rightarrow p \neq \frac{9}{10}\)
अतः \(\frac { 9 }{ 10 } \) को छोड़कर p का कोई भी वास्तविक मान अभीष्ट होगा।s

(iv) 2x + 3y – 5 = 0 ….(1)
px – 6y – 8 = 0 ….(2)
समीकरण युग्म का एक अद्वितीय हल होगा यदि
\(\frac{2}{p} \neq \frac{3}{-6} \Rightarrow 3 p \neq-12 \Rightarrow p \neq-4\)
अतः -4 को छोड़कर p का कोई भी वास्तविक मान अभीष्ट होगा।

(v) 2x + 3y = 7 …(1)
2px + py = 28 – qy
⇒ 2px + (p + q) y = 28 …(2)
समीकरण युग्म के अनन्तशः अनेक हल होंगे
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 18
अतः p एवं के अभीष्ट मान क्रमशः 4 एवं 8 है।

प्रश्न 5.
दो सीधे रास्ते समीकरण युग्म x-3y = 2 एवं- 2x + 6y = 5 के द्वारा प्रदर्शित किए हैं। जाँच कीजिए कि ये रास्ते एक-दूसरे को प्रतिच्छेद करते हैं या नहीं।
हल:
चूँकि x – 3y = 2 ….(1)
एवं -2x + 6y = 5 ….(2)
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 19
अतः दोनों रास्ते परस्पर समान्तर होंगे और परस्पर किसी बिन्दु पर प्रतिच्छेद नहीं करेंगे।

प्रश्न 6.
निम्न आयत में x एवं के मान ज्ञात कीजिए :
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 20
हल:
चूँकि आयत की सम्मुख भुजाएँ बराबर होती हैं इसलिए
x + 3y = 13 ….(1)
3x + y = 7 ….(2)
समीकरण (2) को (3) से गुणा करने पर,
9x + 3y = 21 ….(3)
⇒ 8x = 8 [समीकरण (3) – समीकरण (1) से]
⇒ x = \(\frac { 8 }{ 8 } \) = 1
x का मान समीकरण (1) में रखने पर,
1 + 3y = 13 ⇒ 3y = 13 – 1 = 12
⇒ y = \(\frac { 12 }{ 3 } \) = 4
अतः x एवं y के अभीष्ट मान क्रमश: 1 एवं 4 हैं।

प्रश्न 7.
निम्न समीकरण युग्मों को हल कीजिए:
(i) x + y = 3.3; \(\frac { 0.6 }{ 3x-2y } \) = -1; जहाँ 3x – 2y ≠ 0
(ii) \(\frac { x }{ 3 } \) + \(\frac { y }{ 4 } \) = 4; \(\frac { 5x }{ 6 } \) – \(\frac { y }{ 8 } \) = 4
(iii) 4x + \(\frac { 6 }{ y } \) = 15; 6x – \(\frac { 8 }{ y } \) = 14, जहाँ y ≠ 0
(iv) \(\frac { 1 }{ 2x } \) – \(\frac { 1 }{ y } \) = -1; \(\frac { 1 }{ x } \) + \(\frac { 1 }{ 2y } \) = 8, जहाँ x,y ≠ 0
(v) \(\frac { 2xy }{ x+y } \) = \(\frac { 3 }{ 2 } \); \(\frac { xy }{ 2x-y } \) = \(\frac { -3 }{ 10 } \) जहाँ x + y ≠ 0, 2x – y ≠ 0
हल:
(i) चूंकि x + y = 3.3 …..(1)
एवं \(\frac{0 \cdot 6}{3 x-2 y}=-1 \Rightarrow 3 x-2 y=-0 \cdot 6\) …..(2)
समीकरण (1) को 2 से गुणा करने पर,
2x + 2y = 6.6 …..(3)
⇒ 5x = 6 [समीकरण (3) + समीकरण (2) से]
⇒ x = \(\frac { 6 }{ 5 } \) = 1.2
x का मान समीकरण (1) में रखने पर,
1.2 + y = 3.3 ⇒ y = 3.3 – 1.2 = 2.1
अतः x एवं y के अभीष्ट मान क्रमश: 1.2 एवं 2.1 हैं।

(ii) चूंकि \(\frac { x }{ 3 } \) + \(\frac { y }{ 4 } \) = 4 ⇒ 4x + 3y = 48 ….(1)
एवं \(\frac { 5x }{ 6 } \) – \(\frac { y }{ 8 } \) = 4 ⇒ 20x – 3y = 96 ….(2)
⇒ 24x = 144 [समीकरण (1) + समीकरण (2) से]
⇒ x = \(\frac { 144 }{ 24 } \) = 6
x का मान समीकरण (1) में रखने पर,
4 × 6 + 3y = 48 ⇒ 24 + 3y = 48
⇒ 3y = 48 – 24 = 24 ⇒ y = \(\frac { 24 }{ 3 } \) = 8
अतः x एवं y के अभीष्ट मान = 6 एवं 8 हैं।

NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 20
समीकरण (3) को 4 से तथा समीकरण (4) को 3 से गुणा करने पर,
16x + 24z = 60 …..(5)
18x – 24z = 42 …..(6)
⇒ 34x = 102
⇒ x = \(\frac { 102 }{ 34 } \) = 3
x का मान समीकरण (3) में रखने पर,
4 × 3 + 6z = 15 ⇒ 12 + 3z = 15
⇒ 6z = 15 – 12 = 3 ⇒ z \(\frac { 3 }{ 6 } \) = \(\frac { 1 }{ 2 } \)
z = \(\frac { 1 }{ y } \) = \(\frac { 1 }{ 2 } \) ⇒ y = 2
अतः x एवं के अभीष्ट मान क्रमशः 3 एवं 2 हैं।
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 21
समीकरण (3) को 2 से गुणा करने पर,
2p – 4q = -4 …(5)
⇒ 5q = 20 [समीकरण (4)- समीकरण (5) से]
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 22
अतः x एवं y के अभीष्ट मान क्रमशः \(\frac { 1 }{ 6 } \) एवं \(\frac { 1 }{ 4 } \) हैं।
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 24
q का मान समीकरण (4) में रखने पर,
3p – 6(-\(\frac { 2 }{ 3 } \)) = 10 ⇒ 3p + 4 = 10
⇒ 3p = 10 – 4 = 6 ⇒ p = \(\frac { 6 }{ 3 } \) = \(\frac { 1 }{ x } \) ⇒ x = \(\frac { 3 }{ 6 } \) = \(\frac { 1 }{ 2 } \)
अत: x एवं y के अभीष्ट मान क्रमशः \(\frac { 1 }{ 2 } \) एवं –\(\frac { 3 }{ 2 } \) हैं।

प्रश्न 8.
समीकरण युग्म \(\frac { x }{ 10 } \) + \(\frac { y }{ 5 } \) -1 = 0 एवं \(\frac { x }{ 8 } \) + \(\frac { y }{ 6 } \) = 15 को हल कीजिए और यदि y = λx + 5 तो λ का मान ज्ञात कीजिए।
हल:
चूंकि \(\frac { x }{ 10 } \) + \(\frac { y }{ 5 } \) – 1 = 0 ⇒ x + 2y = 10 ….(1)
एवं \(\frac { x }{ 8 } \) + \(\frac { y }{ 6 } \) = 15 ⇒ 3x + 4y = 360 ….(2)
समीकरण (1) को 2 से गुणा करने पर,
2x + 4y = 20 …(3)
⇒ x = 340 [समीकरण (2)- समीकरण (3) से]
x का मान समीकरण (1) में रखने पर,
340 + 2y = 10 ⇒ 2y = 10 – 340 = -330
⇒ y = \(\frac { -330 }{ 2 } \) = -165
अतः x एवं y के अभीष्ट मान क्रमशः 340 और – 165 हैं।
अब y = λx + 5 में x और y के मान रखने पर,
– 165 = λ × 340 + 5
⇒ 340λ = – 165 – 5 = – 170
⇒ λ = \(\frac { -170 }{ 340 } \) = – \(\frac { 1 }{ 2 } \)
अतः λ का अभीष्ट मान –\(\frac { 1 }{ 2 } \) है।

NCERT Solutions

NCERT Class 10th Maths Chapter 3 अति लघु उत्तरीय प्रश्न

प्रश्न 1.
क्या निम्न रैखिक समीकरण युग्मों का कोई हल नहीं है? अपने उत्तर की पुष्टि कीजिए :
(i) 2x + 4y = 3; 12y + 6x = 6
(ii) x = 2y; y = 2x
(iii) 3x + y – 3 = 0; 2x + \(\frac { 2 }{ 3 } \) y = 2
हल:
(i) चूंकि 2x + 4y = 3 ….(1)
एवं 12y + 6x = 6
⇒ 6x + 12y = 6
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 25
अतः हाँ, समीकरण युग्म का कोई भी हल नहीं है।

(ii) चूंकि x = 2y ⇒ x – 2y = 0 ….(1)
एवं y = 2x ⇒ 2x – y = 0 ….(2)

अत: नहीं, क्योंकि समीकरण युग्म का अद्वितीय हल होगा।
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 26
अत: नहीं, क्योंकि समीकरण युग्म के अनन्तशः अनेक हल होंगे।
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 27

प्रश्न 2.
क्या निम्नलिखित समीकरण युग्म सम्पाती रेखाओं को प्रदर्शित करती हैं? अपने उत्तर की पुष्टि कीजिए :
(i) 3x + \(\frac { 1 }{ 7 } \)y = 3; 7x + 3y = 7
(ii) -2x – 3y = 1; 6y + 4x = -2
(iii) \(\frac { x }{ 2 } \) + y + \(\frac { 2 }{ 5 } \) = 0 ; 4x + 8y + \(\frac { 5 }{ 16 } \) = 0
हल:
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 28
अतः नहीं, क्योंकि यह समीकरण युग्म प्रतिच्छेदी रेखाओं को प्रदर्शित करता है।
(ii) चूंकि -2x – 3y = 1 ⇒ 2x + 3y = – 1 ….(1)
एवं 6y + 4x = -2 = 4x + 6y = -2 ….(2)
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 29
अतः हाँ, यह समीकरण युग्म सम्पाती रेखाओं को प्रदर्शित करता है।
(iii) चूंकि \(\frac { x }{ 2 } \) + y + \(\frac { 2 }{ 5 } \) = 0 ⇒ 5x + 10y + 4 = 0 ….(1)

NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 30
एवं 4x + 8y + \(\frac { 5 }{ 16 } \) ⇒ 64x + 128y + 5 = 0 …..(2)

अतः नहीं, क्योंकि यह समीकरण युग्म समान्तर रेखाओं को प्रदर्शित करता है।

प्रश्न 3.
क्या निम्नलिखित रैखिक समीकरण युग्म संगत है? अपने उत्तर की पुष्टि कीजिए :
(i) – 3x – 4y = 12; 4y + 3x = 12
(ii) \(\frac { 3 }{ 5 } \) x – y = \(\frac { 1 }{ 2 } \) ;\(\frac { 1 }{ 5 } \) x – 3y = \(\frac { 1 }{ 6 } \)
(iii) 2ax + by = a; 4ax + 2by – 2a = 0
(iv) x + 3y = 11; 2 (2x + 6y) = 22
हल:
(i) चूंकि – 3x – 4y = 12 ⇒ 3x + 4y = – 12 ….(1)
एवं 4y + 3x = 12 = 3x + 4y = 12 ……(2)
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 31
अतः नहीं, क्योंकि रैखिक समीकरण युग्म का कोई हल नहीं।
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 32
अतः हाँ, क्योंकि रैखिक समीकरण युग्म का अद्वितीय हल है।
(iii) चूंकि 2ax + by = a ….(1)
4ax + 2by – 2a = 0
⇒ 4ax + 2by = 2a ….(2)
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 33
अत: हाँ, यह रैखिक समीकरण युग्म आश्रित संगत है और इसके अनन्तशः अनेक हल हैं।
(iv) चूंकि x + 3y = 11 ….(1)
एवं 2(2x + 6y) = 22 ⇒ 2x + 6y = 11 ….(2)
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 34
अतः नहीं, क्योंकि रैखिक समीकरण युग्म का कोई हल नहीं है।

प्रश्न 4.
“समीकरण युग्म λx + 3y =-7; 2x + 6y =14 के अनन्तशः अनेक हल होंगे के लिए का मान 1 होना चाहिए,” क्या यह कथन सत्य है? कारण दीजिए।
हल:
चूंकि λx + 3y = -7 ….(1)
एवं 2x + 6y = 14 ….(2)
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 35
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 36
अतः कथन असत्य हैं, क्योकि λ = 1 पर रैखिक समीकरण युग्म का कोई भी हल नहीं होगा।

प्रश्न 5.
c के सभी वास्तविक मानों के लिए समीकरण युग्म x – 2y = 8; 5x – 10y = c का एक अद्वितीय हल होगा। प्रमाणित कीजिए कि कथन सत्य है या असत्य।
हल:
चूँकि x – 2y = 8 ….(1)
एवं 5x – 10y = c ….(2)
एवं \(\frac{a_{1}}{a_{2}}=\frac{1}{5}, \frac{b_{1}}{b_{2}}=\frac{-2}{-10}=\frac{1}{5}\) एवं \(\frac{c_{1}}{c_{2}}=\frac{8}{c}\)
⇒ \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}\)
अतः कथन असत्य है, क्योंकि के किसी भी मान के लिए समीकरण युग्म का अद्वितीय हल नहीं होगा।

प्रश्न 6.
“समीकरण x = 7 के द्वारा प्रदर्शित रेखा x – अक्ष के समान्तर होगी।” पुष्टि कीजिए कि उक्त कथन सत्य है या नहीं:
उत्तर:
कथन असत्य है, क्योंकि x = 7 y – अक्ष के समान्तर रेखा का समीकरण है जो x – अक्ष पर लम्ब होती है। अत: इस पर समान्तर नहीं हो सकती।

NCERT Solutions

NCERT Class 10th Maths Chapter 3 वस्तुनिष्ठ प्रश्न

NCERT Class 10th Maths Chapter 3 बहु-विकल्पीय

प्रश्न 1.
समीकरण युग्म 6x – 3y + 10 = 0 एवं 2x – y + 9 = 0 ग्राफ पर दो रेखाएँ प्रदर्शित करती हैं जो :
(a) एक निश्चित बिन्दु पर परस्पर प्रतिच्छेद करती हैं
(b) दो निश्चित बिन्दुओं पर परस्पर प्रतिच्छेद करती हैं
(c) सम्पाती होती हैं
(d) समान्तर होती हैं।
उत्तर:
(a) एक निश्चित बिन्दु पर परस्पर प्रतिच्छेद करती हैं

प्रश्न 2.
समीकरण युग्म x + 2y + 5 = 0 एवं -3x – 6y + 1 = 0 के होंगे:
(a) एक अद्वितीय हल
(b) दो निश्चित हल
(c) अनन्तशः अनेक हल
(d) कोई हल नहीं।
उत्तर:
(d) कोई हल नहीं।

प्रश्न 3.
यदि एक समीकरण युग्म संगत है तो रेखाएँ होंगी :
(a) समान्तर
(b) सदैव सम्पाती
(c) प्रतिच्छेदी या सम्पाती
(d) सदैव प्रतिच्छेदी।
उत्तर:
(c) प्रतिच्छेदी या सम्पाती

प्रश्न 4.
समीकरण युग्म y = 0 और y = -7 के होंगे :
(a) एक हल
(b) दो हल
(c) अनन्तश: अनेक हल
(d) कोई हल नहीं।
उत्तर:
(d) कोई हल नहीं।

प्रश्न 5.
समीकरण युग्म x = a एवं y = b ग्राफीय रूप से रेखाएँ प्रदर्शित करता है जो होती हैं :
(a) समान्तर
(b) (b, a) पर प्रतिच्छेदी
(c) सम्पाती
(d) (a, b) पर प्रतिच्छेदी।
उत्तर:
(d) (a, b) पर प्रतिच्छेदी।

प्रश्न 6.
k के किस मान के लिए समीकरण 3x – y + 8 = 0 और 6x – ky = -16 सम्पाती रेखाएँ प्रदर्शित करेगा?
(a) \(\frac { 1 }{ 2 } \)
(b) – \(\frac { 1 }{ 2 } \)
(c) 2
(d) -2
उत्तर:
(c) 2

प्रश्न 7.
समीकरण 3x + 2ky = 2 एवं 2x + 5y + 1 = 0 रेखाएँ समान्तर हैं तो k का मान होगा :
(a) – \(\frac { 5 }{ 4 } \)
(b) \(\frac { 2 }{ 5 } \)
(c) \(\frac { 15 }{ 4 } \)
(d) \(\frac { 3 }{ 2 } \)
उत्तर:
(c) \(\frac { 15 }{ 4 } \)

प्रश्न 8.
c का मान जिसके लिए समीकरण युग्म cx – y = 2 एवं 6x – 2y = 4 के अनन्तशः अनेक हल होंगे:
(a) 3
(b) -3
(c) -12
(d) कोई मान नहीं।
उत्तर:
(a) 3

प्रश्न 9.
आश्रित रैखिक समीकरण युग्म में से एक समीकरण -5x + 7y = 2 है, तो दूसरा समीकरण होगा:
(a) 10x + 14y + 4 = 0
(b) – 10x – 14y + 4 = 0
(c) – 10x + 14y + 4 = 0
(d) 10x – 14y = -4.
उत्तर:
(d) 10x – 14y = -4.

प्रश्न 10.
एक रैखिक समीकरण यग्म जिसका अद्वितीय हल x = 2. y = -3 है, होगा :
(a) x + y = – 1; 2x – 3y = -5
(b) 2x + 5y = – 11; 4x + 10 y = 22
(c) 2x – y = 1; 3x + 2y = 0
(d) x – 4y – 14 = 0; 5x – y – 13 = 0
उत्तर:
(d) x – 4y – 14 = 0; 5x – y – 13 = 0

प्रश्न 11.
यदि x = a, y = b समीकरण युग्म x – y = 2 एवं x + y = 4 तब a और b के मान होंगे क्रमशः:
(a) 3 और 5
(b) 5 और 3
(c) 3 और 1
(d) -1 और -3
उत्तर:
(c) 3 और 1

प्रश्न 12.
अन्ना के पास केवल ₹1 और ₹ 2 के सिक्के हैं। यदि सिक्कों की कुल संख्या जो उसके पास हैं, 50 है जिनका कुल मूल्य ₹75 है तब ₹1 और ₹2 के सिक्कों की संख्या होगी क्रमशः:
(a) 35 और 15
(b) 35 और 20
(c) 15 और 35
(d) 25 और 25
उत्तर:
(d) 25 और 25

प्रश्न 13.
एक पिता की उम्र उसके पुत्र की उम्र से 6 गुनी है। चार वर्ष बाद पिता की उम्र अपने पुत्र की उम्र से चार गुनी हो जाएगी। पुत्र एवं पिता की वर्तमान उम्र (वर्षों में) क्रमशः है:
(a) 4 और 24
(b) 5 और 30
(c) 6 और 36
(d) 3 और 18
उत्तर:
(c) 6 और 36

प्रश्न 14.
समीकरण युग्म 5x – 15y = 8 और 3x – 9y = \(\frac { 24 }{ 5 } \) के होंगे :
(a) एक हल
(b) दो हल
(c) अनन्तशः अनेक हल
(d) कोई हल नहीं।
उत्तर:
(c) अनन्तशः अनेक हल

प्रश्न 15.
दो अंकों की संख्या के अंकों का योग 9 है। यदि इसमें 27 जोड़ दिया जाए तो संख्या के अंक उलट जाते हैं। यह संख्या है –
(a) 25
(b) 72
(c) 63
(d) 36
उत्तर:
(d) 36

प्रश्न 16.
जब \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}\) हो. तो समीकरण निकाय a1x + b1y + c1 = 0 तथा a2x + b2y + c2 = 0: (2019)
(a) के दो हल होंगे
(b) को कोई हल नहीं होगा
(c) के अनंत अनेक हल होंगे
(d) का अद्वितीय हल होगा।
उत्तर:
(b) को कोई हल नहीं होगा

प्रश्न 17.
x – 2y = 0 और 2x + 4y – 20 = 0 रेखाएँ:(2019)
(a) प्रतिच्छेद करती हैं
(b) संपाती हैं
(c) समान्तर हैं
(d) इनमे से कोई नहीं।
उत्तर:
(a) प्रतिच्छेद करती हैं

रिक्त स्थानों की पूर्ति

प्रश्न 1.
एक ऐसा समीकरण, जिसका आलेख एक सरल रेखा होता है ………….. समीकरण कहलाता है।
उत्तर:
रैखिक

प्रश्न 2.
रैखिक समीकरण ax + by + c = 0 का आलेख एक ………….. रेखा है।
उत्तर:
सरल

प्रश्न 3.
x एवं’ का मान युग्म (x, y) जो दिए हुए समीकरण ax + by + c = 0 को सन्तुष्ट करता है, उस समीकरण का ………….. कहलाता है।
उत्तर:
हल

प्रश्न 4.
जब किसी समीकरण निकाय का कोई हल होता है, तब निकाय ………….. निकाय कहलाता है।
उत्तर:
संगत

प्रश्न 5.
जब किसी समीकरण निकाय का कोई भी हल नहीं होता, तब निकाय ………….. निकाय कहलाता है।
उत्तर:
असंगत।

जोड़ी मिलाइए
NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Examples and MCQs 37
उत्तर:

  1. → (c)
  2. → (d)
  3. → (e)
  4. → (a)
  5. → (b)

सत्य/असत्य कथन

  1. समीकरण x + 2y = 5 में यदि x = 1, तो y = 2 होगा।
  2. वर्ग समीकरण का आरेख एक सरल रेखा होती है।
  3. रैखिक समीकरण युग्म के कोई हल नहीं हो सकते या एक अद्वितीय हल हो सकता है अथवा अनन्तशः अनेक हल भी हो सकते हैं।
  4. समीकरण युग्म x = a एवं y = b दो समान्तर रेखाओं को निरूपित करते हैं।
  5. ax + by + c = 0 प्रकार के समीकरण रैखिक युगपद समीकरण होते हैं।

उत्तर:

  1. सत्य
  2. असत्य
  3. सत्य
  4. असत्य
  5. सत्य।

NCERT Solutions

एक शब्द/वाक्य में उत्तर

प्रश्न 1.
वह समीकरण निकाय क्या कहलाता है, जिसका कोई हल न हो?
उत्तर:
असंगत

प्रश्न 2.
वह समीकरण निकाय क्या कहलाता है जिसका कोई हल होता है।
उत्तर:
संगत

प्रश्न 3.
जिस समीकरण का आलेख एक सरल रेखा हो, वह क्या कहलाता है?
उत्तर:
रैखिक समीकरण

प्रश्न 4.
जब किसी समीकरण निकाय के अनन्तशः अनेक हल हों, तो उसका आलेख कैसा होगा?
उत्तर:
सम्पाती रेखाएँ

प्रश्न 5.
जब किसी समकरण निकाय का कोई अद्वितीय हल हो, तो उसका आलेख कैसा होगा?
उत्तर:
प्रतिच्छेदी रेखाएँ

प्रश्न 6.
जब किसी समीकरण निकाय का कोई हल न हो, तो उसका आलेख कैसा होगा?
उत्तर:
समान्तर रेखाएँ

प्रश्न 7.
यदि \(\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}\) तो निकाय का हल क्या होगा?
उत्तर:
अद्वितीय हल

प्रश्न 8.
यदि \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}\), तो निकाय का हल क्या होगा?
उत्तर:
कोई हल नहीं

प्रश्न 9.
यदि \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\), तो निकाय का हल क्या होगा?
उत्तर:
अनन्ततः अनेक हल।

Previous Post

NCERT Class 10th Maths Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.7

Next Post

NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2

Related

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.