NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1

by Sudhir
December 4, 2021
in 10th Maths, Class 10th Solutions
Reading Time: 5 mins read
0
NCERT Class 10th Maths Solutions
13
VIEWS
Share on FacebookShare on Twitter

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 11 रचनाएँ Ex 11.1. These solutions are based on new NCERT Syllabus.

NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1

निम्न में से प्रत्येक के लिए रचना का औचित्य भी दीजिए।

प्रश्न 1.
7.6 cm लम्बा एक रेखाखण्ड खींचिए और इसे 5 : 8 अनुपात में विभाजित कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 1
मान लीजिए AB = 7.6 cm लम्बा दिया हुआ रेखाखण्ड है जिसे 5 : 8 के अनुपात में विभाजित करना है।
रचना के चरण :

  1. AB = 7.6 cm लम्बा एक रेखाखण्ड खींचिए।
  2. रेखा AB के बिन्दु A पर नीचे की ओर ∠BAX = θ एक न्यूनकोण बनाते हुए किरण AX खींचिए।
  3. रेखा AB के बिन्दु B पर ऊपर की ओर ∠ABY = ∠BAY = θ न्यूनकोण बनाते हुए किरण BY खींचिए।
  4. AX एवं BY से क्रमश: AA1 = A1A2 = A2A3 = A3A4 = A4A5 = BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7 = B7B8 रेखाखण्ड काटिए।
  5. A6B8 रेखाखण्ड को मिलाइए जो AB को बिन्दु C पर प्रतिच्छेद करता है।

अत: AB के अभीष्ट विभाजित खण्ड AC : CB = 5 : 8 है।
एवं AC = 2.9 (लगभग)
तथा BC = 4.7 (लगभग)
उत्तर रचना का औचित्य : ∆CAA5 एवं ∆CBB8 में,
∵ ∠CAA5 = ∠CBB8 [रचना से हैं।
∵ ∠ACA5 = ∠BCB8 [शीर्षाभिमुख कोण हैं]
⇒ ∆CAA5 ~ ∆CBB8 [AA समरूपता]
⇒ \(\frac{A C}{B C}=\frac{A A_{5}}{B B_{8}}=\frac{5}{8}\)
⇒ AC : BC = 5 : 8.

प्रश्न 2.
4 cm, 5cm एवं 6 cm भुजाओं वाले एक त्रिभुज की रचना कीजिए और इसके समरूप अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की \(\frac { 2 }{ 3 }\) गुनी हैं।
हल :
NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 2
मान लीजिए कि एक दिए हुए त्रिभुज ABC की रचना करनी है जिसकी भुजाएँ AB = 4 cm, BC = 5 cm और CA = 6 cm हैं तथा इसके समरूप एक अन्य त्रिभुज की रचना दिए हुए स्केल गुणक \(\frac { 2 }{ 3 }\) के अनुसार करनी है।
रचना के पद :

  1. एक रेखाखण्ड BC = 5 cm खींचिए।
  2. B को केन्द्र मानकर AB = 4 cm की त्रिज्या एवं C को केन्द्र मानकर CA = 6 cm की त्रिज्या से चाप खींचिए जो परस्पर बिन्दु A पर प्रतिच्छेद करते हैं।
  3. AB एवं AC को मिलाइए। इस प्रकार ∆ABC की रचना होती है।
  4. BC रेखाखण्ड के बिन्दु B पर नीचे की ओर ∠CBX = θ एक न्यूनकोण बनाते हुए किरण BX खींचिए।
  5. किरण BX से BB1 = B1B2 = B2B3 तीन बराबर रेखाखण्ड खींचिए।
  6. B3C को मिलाइए।
  7. B2 से B2C’||B3BC एक रेखाखण्ड खींचिए जो BC को बिन्दु C’ पर प्रतिच्छेद करता है।
  8. C’ से C’ A’ || CA एक रेखाखण्ड खींचिए जो AB को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः इस प्रकार बना अभीष्ट ∆A’BC’ ~ ∆ABC है जिसका स्केल गुणक \(\frac { 2 }{ 3 }\) है।
रचना का औचित्य : ∆BA’C’ एवं ∆BAC में
∵∠A’BC’ = ∠ABC [उभयनिष्ठ हैं]
∵∠A’C’B = ∠ACB रचना से (संगत कोण है)]
⇒ ∆A’BC’ ~ ∆ABC [AA समरूपता]
⇒ \(\frac{A^{\prime} B}{A B}=\frac{B C^{\prime}}{B C}=\frac{B B_{2}}{B B_{3}}=\frac{2}{3}\) [समरूप त्रिभुजों की संगत भुजाएँ]

प्रश्न 3.
5 cm, 6 cm और 7 cm भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की \(\frac { 7 }{ 5 }\) गुनी हैं।
हल :
NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 3
मान लीजिए एक दिए हुए ∆ABC की भुजाएँ क्रमश: AB = 5 cm, BC = 6 cm एवं CA = 7 cm की रचना करके एक अन्य ∆A’BC’ समरूप त्रिभुज की रचना करनी है जिसका स्केल गुणक \(\frac { 7 }{ 5 }\) हैं।
रचना के पद :

  1. एक रेखाखण्ड BC = 6 cm खींचिए।
  2. B को केन्द्र लेकर AB = 5 cm तथा C को केन्द्र लेकर CA = 7 cm की त्रिज्या से चाप खींचिए जो परस्पर बिन्दु A प्रतिच्छेद करते हैं।
  3. AB एवं AC को मिलाइए। इस प्रकार ∆ABC की रचना होगी।
  4. BC को आगे X तक तथा BA को आगे Y तक बढ़ाइए एवं बिन्दु B पर (नीचे की ओर) < XBZ = θ एक न्यूनकोण बनाते हुए किरण BZ खींचिए।
  5. BZ से BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7 रेखाखण्ड काटिए।
  6. B5 को C से मिलाइए।
  7. B7 से B7C’ || B5C रेखाखण्ड खींचिए जो BX को बिन्दु C’ पर प्रतिच्छेद करता है।
  8. C’ से C’A’ || CA रेखाखण्ड खींचिए जो BY को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः इस प्रकार बना अभीष्ट ∆A’BC’ ~ ∆ABC है जिसका स्केल गुणक \(\frac { 7 }{ 5 }\) है।
रचना का औचित्य : ∆A’ BC’ एवं ∆ABC में
∵ ∠A’BC’ = ∠ABC [उभयनिष्ठ हैं]
∵ ∠A’C’B = ∠ACB [रचना से (संगत कोण हैं)]
⇒ ∆A’BC’ ~ ∆ABC [AA समरूपता]
⇒ \(\frac{B A^{\prime}}{B A}=\frac{B C^{\prime}}{B C}=\frac{B B_{7}}{B B_{5}}=\frac{7}{5}\)[समरूप प्रमुख का संगत मुजाए ह]

NCERT Solutions

प्रश्न 4.
आधार 8 cm तथा ऊँचाई 4 cm के एक समद्विबाहु त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ इस समद्विबाहु त्रिभुज की संगत भुजाओं की
\(1\frac { 1 }{ 2 }\), गुनी हैं।
हल :
NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 4
मान लीजिए एक दिए हुए समद्विबाहु त्रिभुज ABC का आधार BC = 8 cm एवं शीर्ष लम्ब (ऊँचाई) AD = 4 cm है तथा AB = AC की रचना करनी है तथा एक अन्य समरूप त्रिभुज A’BC’ की रचना करनी है जिसका स्केल गुणक \(1\frac { 1 }{ 2 }\) = \(\frac { 3 }{ 2 }\) हैं।
रचना के पदः

  1. आधार BC = 8 cm का एक रेखाखण्ड खींचिए।
  2. BC का लम्बार्द्धक PQ खींचिए जो आधार BC को बिन्दु M पर समद्विभाजित करता है।
  3. MP में से MA = 4 cm का रेखाखण्ड काटिए।
  4. AB एवं AC को मिलाइए।
    इस प्रकार अभीष्ट ∆ABC (एक समद्विबाहु त्रिभुज) की रचना होती है।
  5. BC, BA को क्रमशः X एवं Y तक बढ़ाइए एवं बिन्दु B पर ∠CBZ = θ एक न्यूनकोण (नीचे की ओर) बनाते हुए किरण BZ खींचिए।
  6. किरण BZ से BB1 = B1B2 = B2B3 रेखाखण्ड काटिए।
  7. B2C को मिलाइए।
  8. B3C’ || B2C खींचिए जो किरण BX को बिन्दु C’ पर प्रतिच्छेद करती है।
  9. C’A’ || CA खींचिए जो किरण BY को बिन्दु A’ पर प्रतिच्छेद करती है।

अतः यही अभीष्ट ∆A’BC’ ~ ∆ABC है, जहाँ स्केल गुणक \(\frac { 3 }{ 2 }\) है अर्थात् ∆A’BC’ की भुजाएँ ∆ABC की संगत भुजाओं की \(1\frac { 1 }{ 2 }\) गुनी है।
रचना का औचित्य : ∆A’BC’ एवं ∆ABC में,
∵ ∠A’BC’ = ∠ABC [उभयनिष्ठ हैं]
∵ ∠A’C’B = ∠ACB [संगत कोण हैं-रचना से]
⇒ ∆A’BC’ ~ ∆ABC [AA समरूपता]
⇒ \(\frac{B A^{\prime}}{B A}=\frac{B C^{\prime}}{B C}=\frac{B B_{3}}{B B_{2}}=\frac{3}{2}\) [समरूप त्रिभुजों की संगत भुजाएँ हैं]

प्रश्न 5.
एक त्रिभुज ABC बनाइए जिसमें BC = 6 cm, AB = 5 cm और ∠ABC = 60° हैं। फिर एक त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac { 3 }{ 4 }\) गुनी हों।
हल :
NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 5
एक दिए हुए ∆ABC की रचना करनी है जिसमें BC = 6 cm, AB = 5 cm एवं ∠ABC = 60° है तथा इसके समरूप एक अन्य ∆A’BC’ खींचना है।
जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac { 3 }{ 4 }\) गुनी हो।
रचना के पद :

  1. एक रेखाखण्ड BC = 6 cm खींचा।
  2. BC के बिन्दु B पर ∠CBX = 60° का कोण बनाते हुए एक किरण BX खींची।
  3. BX किरण में से BA = 5 cm का एक रेखाखण्ड काटा।
  4. AC को मिलाया। इस प्रकार ∆ABC की रचना हुई।
  5. BC के बिन्दु B पर ∠CBY = θ एक न्यूनकोण बनाते हुए किरण BY खींची।
  6. किरण BY में से BB1 = B1B2 = B2B3 = B3B4 रेखाखण्ड काटे।
  7. B4C को मिलाया।
  8. बिन्दु B3 से ∠C’B3B = ∠CB4B संगत कोण बनाते हुए C’B3 || CB रेखाखण्ड खींचा जो BC को बिन्दु C’ पर प्रतिच्छेद करता है।
  9. बिन्दु C’ से ∠A’C’B = ∠ACB संगत कोण बनाते हुए रेखाखण्ड, A’C’ खींचा जो AB को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः यही अभीष्ट ∆A’BC’ ~ ∆ABC है जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac { 3 }{ 4 }\) गुनी हैं।
रचना का औचित्य : त्रिभुज ABC में A’C’ || AC [रचना से]
⇒ \(\frac{A^{\prime} B}{A B}=\frac{C B}{C B}\) …(1) [समरूप त्रिभुज के प्रगुण]
एवं ∆BCB4 में C’B3 || CBA [रचना से]
⇒ \(\frac{C^{\prime} B}{C B}=\frac{B_{3} B}{B_{4} B}=\frac{3}{4}\) ….(2) [समरूप त्रिभुज के प्रगुण]
⇒ \(\frac{A^{\prime} B}{A B}=\frac{C^{\prime} B}{C B}=\frac{3}{4}\) [समीकरण (1) और (2) से] ।

प्रश्न 6.
एक त्रिभुज ABC बनाइए जिसमें BC = 7 cm, ∠B = 45°, ∠A = 105° हो, फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac { 4 }{ 3 }\) गुनी हों।
हल :
NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 6
एक दिए हुए त्रिभुज ABC की रचना करनी है जिसमें BC = 7 cm, ∠B = 45° एवं ∠A = 105°, अतः ∠C = 180° – (45° + 105°) = 180° – 150° = 30° तथा स्केल गुणक \(\frac { 4 }{ 3 }\) वाले समरूप त्रिभुज की रचना करनी है।
रचना के पद :

  1. एक किरण BY खींचिए।
  2. किरण BX से BC = 7 cm का एक रेखाखण्ड काटिए।
  3. बिन्दु B पर ∠CBY = 45° बनाते हुए किरण BY खींचिए।
  4. बिन्दु C पर ∠BCZ = 30° बनाते हुए एक किरण CZ खींचिए जो किरण BY को बिन्दु A पर प्रतिच्छेद करती है। इस प्रकार ∆ABC की रचना होती है।
  5. किरण BX के साथ नीचे की ओर ∠XBT = θ एक न्यूनकोण बनाते हुए किरण BT खींचिए।
  6. किरण BT में से BB1 = B1B2 = B2B3 = B3B4. रेखाखण्ड काटिए।
  7. B3C को मिलाइए।
  8. B4 से B4C’ || B3C खींचिए जो BX को बिन्दु C’ पर प्रतिच्छेद करती है।
  9. C’ से A’C’ || AC रेखाखण्ड खींचिए जो BY को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः यही अभीष्ट ∆A’BC’ ~ ∆ABC है। जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac { 4 }{ 3 }\) गुनी हैं।
रचना का औचित्य : चूँकि ∆A’BC’ में AC || A’C’ है।
⇒ \(\frac{A^{\prime} B}{A B}=\frac{C^{\prime} B}{C B}\) …(1)[समरूप त्रिभुज के प्रगुण]
एवं ∆C’BB4 में CB3 || C’B4 है
⇒ \(\frac{C^{\prime} B}{C B}=\frac{B_{4} B}{B_{3} B}=\frac{4}{3}\) ….(2) [समरूप त्रिभुज के प्रगुण]
⇒ \(\frac{A^{\prime} B}{A B}=\frac{C^{\prime} B}{C B}=\frac{4}{3}\) [समीकरण (1) एवं (2) से]

NCERT Solutions

प्रश्न 7.
एक समकोण त्रिभुज की रचना कीजिए जिसकी भुजाएँ (कर्ण के अतिरिक्त) 4 cm तथा 3 cm लम्बाई की हों। फिर एक अन्य त्रिभुज की रचना कीजिए जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की \(\frac { 5 }{ 3 }\) गुनी हों।
हल :
NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.1 7
मान लीजिए एक दिए हुए समकोण ∆ABC की रचना करनी है जिसका ∠B समकोण है तथा भुजाएँ AB = 4 cm तथा BC = 3 cm हैं। इसके अतिरिक्त एक अन्य । त्रिभुज की रचना करनी है जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac { 5 }{ 3 }\) गुनी हों।
रचना के चरण :

  1. एक किरण BX खींचिए तथा BX में से BC = 3 cm का रेखाखण्ड काटिए।
  2. बिन्दु B पर BC के साथ ∠CBY = 90° (समकोण) बनाते हुए किरण BY खींचिए।
  3. किरण BY में से BA = 4 cm का रेखाखण्ड काटिए।
  4. AC को मिलाइए। इस प्रकार समकोण ∆ABC की रचना होती है।
  5. बिन्दु B पर BX के साथ ∠XBZ = θ एक न्यूनकोण बनाते हुए किरण BZ खींचिए।
  6. BZ में से BB1 = B1B2 = B2B3 = B3B4 = B4B5 काटिए।
  7. B3C को मिलाइए।
  8. B5 से B5C’ || B3C रेखाखण्ड खींचिए जो BX को बिन्दु C’ पर प्रतिच्छेद करता है।
  9. C’ से C’A’ || CA एक रेखाखण्ड खींचिए जो BY को बिन्दु A’ पर प्रतिच्छेद करता है।

अतः यही ∆A’BC अभीष्ट समकोण त्रिभुज है जिसकी भुजाएँ ∆ABC की संगत भुजाओं की \(\frac { 5 }{ 3 }\) गुनी हैं।
रचना का औचित्य : चूँकि ∆A’BC’ में AC || A’C’ [रचना से]
⇒ \(\frac{A^{\prime} B}{A B}=\frac{C^{\prime} B}{C B}\) …(1) [समरूप त्रिभुजों के प्रगुण]
एवं ∆C’BB5 में, CB3 || C’B5 [रचना से]
⇒ \(\frac{C^{\prime} B}{C B}=\frac{B_{5} B}{B_{3} B}=\frac{5}{3}\) …..(2) [समरूप त्रिभुजों के प्रगुण]
⇒ \(\frac{A^{\prime} B}{A B}=\frac{C^{\prime} B}{C B}=\frac{5}{3}\) [समीकरण (1) एवं (2) से]

Previous Post

NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Examples and MCQs

Next Post

NCERT Class 10th Maths Solutions Chapter 11 रचनाएँ Ex 11.2

Related

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.