NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs

by Sudhir
December 4, 2021
in 10th Maths, Class 10th Solutions
Reading Time: 15 mins read
0
NCERT Class 10th Maths Solutions
18
VIEWS
Share on FacebookShare on Twitter

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 10 Examples and MCQs. These solutions are based on new NCERT Syllabus.

Table of Contents

Toggle
  • NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs
    • NCERT Class 10th Maths Chapter 10 अतिरिक्त परीक्षोपयोगी प्रश्न
    • NCERT Class 10th Maths Chapter 10 वस्तुनिष्ठ प्रश्न

NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs

NCERT Class 10th Maths Chapter 10 अतिरिक्त परीक्षोपयोगी प्रश्न

NCERT Class 10th Maths Chapter 10 दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
वृत्त के किसी बिन्दु पर खींची गई स्पर्श रेखा, स्पर्श बिन्दु से खींची गई त्रिज्या पर लम्ब होती है। सिद्ध कीजिए।
अथवा
वृत्त की स्पर्श रेखा स्पर्श बिन्दु से होकर जाने वाली त्रिज्या पर लम्ब होती है। सिद्ध कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 1
ज्ञात है : वृत्त C (O, r) की स्पर्श रेखा AB जिसका बिन्दु P स्पर्श बिन्दु है। OP स्पर्श बिन्दु से होकर जाने वाली त्रिज्या है।
सिद्ध करना है : OP ⊥ AB
रचना : रेखा AB पर P के अतिरिक्त एक अन्य बिन्दु Q लीजिए और OQ को मिलाइए।
उपपत्ति: ∵Q एस्पर्श रेखा AB पर स्पर्श बिन्दु P के अतिरिक्त कोई अन्य बिन्दु है।
∵ Q वृत्त के बाहर स्थित होगा।
∴ OQ > OP
अर्थात् OP < OQ
∵ किसी बिन्दु O से रेखा AB तक खींचे गये रेखाखण्डों में OP सबसे छोटा है।
∴ OP ⊥ AB.
इति सिद्धम्

प्रश्न 2.
किसी वृत्त के बाह्य बिन्दु से खींची गई स्पर्श रेखाएँ तुल्य होती हैं। सिद्ध कीजिए।
अथवा
किसी बाह्य बिन्दु से वृत्त पर खींची गई दो स्पर्श रेखाओं की लम्बाइयाँ बराबर होती हैं। सिद्ध कीजिए। (2019)
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 2
ज्ञात है : वृत्त C (O, r) पर बाह्य बिन्दु P से खींचे गए दो स्पर्श रेखाखण्ड PQ और PR हैं।
सिद्ध करना है : PQ = PR
रचना : रेखाखण्ड OP, OQ और OR खींचिए।
उपपत्ति : ∵ PQ एवं PR स्पर्श रेखाएँ और OQ एवं OR त्रिज्याएँ हैं।
∴ OQ ⊥ PQ
OR ⊥ PR
∴ ∠OQP = ∠ORP = 90°
अब समकोण ∆OQP एवं ∆ORP में,
∵ कर्ण OP = कर्ण OP [उभयनिष्ठ है]
∵ भुजा OQ = भुजा OR [वृत्त की त्रिज्याएँ हैं]
∴ ∆OQP ≅ ∆ORP [R.H.S. सर्वांगसम प्रमेय से]
∴ PQ = PR.
इति सिद्धम्

प्रश्न 3.
यदि किसी वृत्त की जीवाएँ एक-दूसरे को वृत्त के अन्तर्गत या बहिर्गत प्रतिच्छेद करती हैं, तो एक जीवा के खण्डों से निर्मित आयत दूसरी जीवा के खण्डों से निर्मित क्षेत्रफल के तुल्य होगा।
अथवा
यदि किसी वृत्त की दो जीवाएँ वृत्त के अन्दर या बढ़ाने पर वृत्त के बाहर प्रतिच्छेद करती हों, तो एक जीवा के दो खण्डों से बने आयत का क्षेत्रफल दूसरी जीवा के दो खण्डों से बने आयत के क्षेत्रफल के बराबर होता है।
हल :
ज्ञात है : वृत्त C (O,r) की दो जीवाएँ AB और CD जो वृत्त के अन्दर या बढ़ाने पर वृत्त के बाहर बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है : PA.PB = PC.PD
रचना : AC और BD को मिलाइए।
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 3
उपपत्ति : स्थिति-I में जबकि जीवाएँ AB एवं CD वृत्त के अन्दर बिन्दु P पर परस्पर प्रतिच्छेद करती हैं :
∆PAC और ∆PDB में,
∵ ∠PCA = ∠PBD [एक ही वृत्त खण्ड के कोण हैं।
∵ ∠PAC = ∠PDB [एक ही वृत्त खण्ड के कोण हैं।
∵ ∠APC = ∠BPD [शीर्षाभिमुख कोण हैं।
∴ ∆PAC ~ ∆PDB [AAA समरूपता प्रमेय]
∴ \(\frac{P A}{P D}=\frac{P C}{P B}\) [समरूप त्रिभुजों की परिभाषा से]
अर्थात् PA.PB = PC.PD.
इति सिद्धम्
स्थिति-II में जबकि जीवाएँ AB एवं CD बढ़ाने पर वृत्त के बाहर बिन्दु P पर प्रतिच्छेद करती हैं :
∵ ∠PAC + ∠CAB = 180° …(1) [कोणों का रैखिक युग्म]
∵ ∠CAB + ∠CDB = 180° …(2) [चक्रीय चतुर्भुज के सम्मुख कोण हैं|
∴ ∠PAC = ∠CDB (या ∠PDB) [(1) एवं (2) से]
इसी प्रकार ∠PCA = ∠ABD (या ∠PBD)
अब ∆PAC और ∆PDB में,
∵ ∠PAC = ∠PDB [सिद्ध कर चुके हैं।
∵ ∠PCA = ∠PBD [सिद्ध कर चुके हैं।
∵ ∠APC = ∠DPB [उभयनिष्ठ हैं
∴ ∆PAC ~ ∆PDB [AAA समरूपता प्रमेय]
∴ \(\frac{P A}{P D}=\frac{P C}{P B}\) [समरूप त्रिभुजों की परिभाषा से
अर्थात् PA.PB = PC.PD.
इति सिद्धम्

NCERT Solutions

प्रश्न 4.
PAB, O केन्द्र के वृत्त की छेदक रेखा है, जो वृत्त को A एवं B पर काटती है तथा PT स्पर्श रेखा है, तो सिद्ध कीजिए कि PA.PB = PT².
अथवा
यदि PAB वृत्त की छेदक रेखा हो जो वृत्त को A और B पर प्रतिच्छेद करती है और PT एक स्पर्श रेखा हो, तो सिद्ध कीजिए कि PA.PB = PT².
हल :
ज्ञात है : वृत्त C (O, r) की एक छेदक रेखा PAB जो वृत्त को A एवं B पर प्रतिच्छेद करती है तथा PT एक स्पर्श रेखा जो वृत्त को T पर स्पर्श करती है।
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 4
सिद्ध करना है : PA.PB = PT²
रचना : OM ⊥ AB खींचिए। OA, OP एवं OT को मिलाइए।
उपपत्ति: PA.PB = (PM – AM) (PM + MB)
= (PM – AM) (PM+ AM)
[∵ OM ⊥ AB ⇒ AM = MB]
= PM² – AM²
= (OP² – OM²) – (OA² – OM²)
= OP² – OA² [पाइथागोरस प्रमेय]
= OP² – OT² [∵ OA = OT त्रिज्याएँ हैं।
= PT² [पाइथागोरस प्रमेय]
अतः, PA.PB = PT².
इति सिद्धम्

प्रश्न 5.
यदि कोई रेखा वृत्त को स्पर्श करे और स्पर्श बिन्दु से एक जीवा खींची जाये, तो वे कोण जो जीवा स्पर्श रेखा के साथ बनाती है, क्रमशः संगत एकान्तर वृत्त खण्ड में बने कोणों के बराबर होते हैं।
अथवा
यदि वृत्त की स्पर्श रेखा के स्पर्श बिन्दु से एक जीवा खींची जाए, तो इस जीवा द्वारा दी गई स्पर्श रेखा के साथ बनाए गए कोण, संगत एकान्तर वृत्त खण्डों में बनाए गए कोण के क्रमशः बराबर होते हैं।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 5
ज्ञात है : AB वृत्त C (O,r) की एक स्पर्श रेखा है जिसका स्पर्श बिन्दु P है। P से एक जीवा PQ खींची गई है। ∠PRO एवं ∠PSQ क्रमशः वृत्त खण्डों में बने कोण हैं।
सिद्ध करना है: ∠PRQ = ∠QPB
एवं ∠PSQ = ∠OPA
रचना : व्यास POT खींचिए और TQ को मिलाइए।
उपपत्ति: ∵ ∠TOP = 90° [अर्द्धवृत्त का कोण है]
∴ ∠TPQ + ∠PTQ = 90° …(1) [समकोण त्रिभुज के शेष कोण हैं।
∵ ∠TPQ + ∠QPB = ∠TPB = 90° …(2) [∵ TP ⊥ AB]
∴ ∠PTQ = ∠QPB [समीकरण (1) एवं (2) से]
लेकिन ∠PTQ = ∠PRQ [एक ही वृत्त खण्ड के कोण हैं]
∴ ∠PRQ = ∠QPB. इति सिद्धम
∵ ∠QPA + ∠QPB = 180° [ऋजु रेखीय युग्म]
∵ ∠PSQ + ∠PRQ = 180° [चक्रीय चतुर्भुज के सम्मुख कोण हैं]
∴ ∠PSQ + ∠PRQ = ∠QPB + ∠QPA
लेकिन ∠PRQ = ∠QPB [सिद्ध कर चुके हैं।
∴ ∠PSQ = ∠QPA.
इति सिद्धम्

प्रश्न 6.
यदि दो वृत्त एक-दूसरे को (अन्तः या बाह्य रूप से) स्पर्श करते हैं, तो स्पर्श बिन्दु वृत्तों के केन्द्रों को मिलाने वाली सरल रेखा पर स्थित होता है।
अथवा
यदि दो वृत्त एक-दूसरे को (आन्तरिकतः या बाह्यतः) स्पर्श करते हों, तो स्पर्श बिन्दु केन्द्रों से होकर जाने वाली रेखा पर स्थित होता है।
हल :
ज्ञात है : दो वृत्त C (O, r) एवं C (O’, r’) एक-दूसरे को बिन्दु P पर स्पर्श करते हैं।
सिद्ध करना है : O, P एवं O’ सरेख हैं।
रचना : बिन्दु P पर दोनों वृत्तों की सामान्य स्पर्शी APB खींचिए। OP एवं O’P को मिलाइए।
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 6
उपपत्ति: स्थिति-I में,
∵ त्रिज्या OP के सिरे P पर APB वृत्त की स्पर्श रेखा है।
∴OP ⊥ APB
इसी प्रकार O’P ⊥ APB
किसी रेखा के किसी बिन्दु पर एक ही ओर एक और केवल एक लम्ब खींचा जा सकता है।
इसीलिए OP एवं O’ P संपाती होंगी।
अतः O,O’,P संरेख हैं। इति सिद्धम्
स्थिति-II में,
∵ त्रिज्या OP के सिरे P पर APB वृत्त की स्पर्श रेखा है।
∴ OP ⊥ APB
अर्थात् ∠OPA = 90°
इसी प्रकार ∠APO’ = 90°
∴ ∠OPA + ∠APO’ = 180°
इसलिए O, P एवं O’ संरेख हैं। इति सिद्धम्

प्रश्न 7.
संलग्न आकृति में दो वृत्त जिनके केन्द्र O एवं O’ हैं, एक-दूसरे को A पर स्पर्श करते हैं। A से एक सरल रेखा खींची गई है जो वृत्तों को B और C पर काटती है। सिद्ध कीजिए कि B और C पर स्पर्श रेखाएँ समानान्तर हैं।
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 7
हल :
ज्ञात है : O एवं O’ केन्द्र वाले दो वृत्त एक-दूसरे को A पर स्पर्श करते हैं। A से एक रेखा खींची गई है, जो वृत्तों को क्रमश: B एवं C पर काटती है। B तथा C पर स्पर्श रेखाएँ क्रमशः DE एवं FG खींची गई हैं।
सिद्ध करना है : रेखा DE || रेखा FG
रचना : OB एवं O’C को मिलाया।
उपपत्ति : ∵ OB = OA [एक ही वृत्त की त्रिज्या हैं।
∴ ∠OBA = ∠OAB …..(1)
[समान भुजाओं के सामने के कोण हैं।
∴ O’A = O’C [एक ही वृत्त की त्रिज्याएँ हैं]
∵ ∠O’AC = ∠O’CA …(2)
[समान भुजाओं के सामने के कोण हैं।
∠OAB = ∠O’CA …(3)
[शीर्षाभिमुख कोण हैं
समीकरण (1) एवं (3) से,
∠OBA = ∠O’CA …(4)
∵ ∠OBA + ∠ABE = ∠O’CA + ∠ACF …(5)
[क्योंकि OB ⊥ DE एवं O’C ⊥ FG]
समीकरण (4) एवं (5) से,
∠ABE = ∠ACF
लेकिन ये कोण एकान्तर कोण हैं।
अतः, DE || FG.
इति सिद्धम्

प्रश्न 8.
ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC, त्रिभुज का परिगत वृत्त खींचा गया है। सिद्ध कीजिए कि वृत्त के बिन्दु A पर खींची गई स्पर्श रेखा BC के समानान्तर है।
अथवा
यदि ∆ABC एक समद्विबाहु त्रिभुज हो, जहाँ AB = AC हो, तो सिद्ध कीजिए कि ∆ABC के परिवृत्त के बिन्दु A पर स्पर्श रेखा BC के समानान्तर होती है।
हल :
दिया है : समद्विबाहु ∆ABC, जिसमें AB = AC
∆ABC के परिवृत्त C (O, r) के बिन्दु A से जाने वाली स्पर्श रेखा PQ
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 8
सिद्ध करना है : PQ || BC
रचना : A से BC पर लम्ब AM खींचिए।
उपपत्ति : ∵ AM ⊥ BC
∴ ∠AMB = 90° …(1)
चूँकि समद्विबाहु त्रिभुज के शीर्ष से डाला गया लम्ब आधार को समद्विभाजित करता है, अत: AM, BC का लम्ब समद्विभाजक है। चूँकि चाप BC का लम्ब समद्विभाजक AM है।
अतः AM परिवृत्त के केन्द्र O से होकर जायेगा।
∵ ∠MAQ = ∠OAQ = 90° [∵ PQ स्पर्श रेखा है] …(2)
∴ ∠AMB = ∠MAQ [OA ⊥ PQ]
लेकिन ये एकान्तर कोण हैं।
∴ PQ || BC.
इति सिद्धम्

NCERT Solutions

प्रश्न 9.
AB वृत्त का व्यास और AC जीवा है। ∠BAC = 30°, C बिन्दु पर वृत्त की स्पर्श रेखा AB को उसके बढ़े हुए भाग से D पर मिलती है। सिद्ध कीजिए कि
BC = BD.
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 9
ज्ञात है : एक वृत्त जिसका केन्द्र O है।
इसका व्यास AOB है। एक जीवा AC है तथा ∠BAC = 30° है। C पर एक स्पर्श रेखा खींची गई है, जो AB को बढ़ाने पर D बिन्दु पर काटती है।
सिद्ध करना है : BC = BD
रचना : OC को मिलाया।
उपपत्ति : ∵ चाप BC द्वारा केन्द्र पर बना
कोण ∠BOC तथा शेष परिधि पर बना कोण ∠BAC है।
∴ ∠BOC = 2 ∠BAC = 2 x 30° = 60°
∵ OB = OC [वृत्त की त्रिज्याएँ हैं|
∴ ∠OBC = ∠OCB = 60° [: ∠BOC = 60°]
∵ OC त्रिज्या एवं CD स्पर्श रेखा है।
∴ ∠OCB + ∠BCD = ∠OCD = 90°
⇒ 60° + ∠BCD = 90°
⇒ ∠BCD = 90° – 60° = 30°
∆OCD में, ∠OCD + ∠COD + ∠ODC = 180°
⇒ 90° +60° + ∠BDC = 180°
∠BDC = 180° – 90° – 60° = 30°
∆BCD में,
∵ ∠BCD = ∠BDC = 30°
∴ भुजा BC = भुजा BD [समान कोणों की सम्मुख भुजाएँ हैं।
अतः, BC = BD.
इति सिद्धम्

प्रश्न 10.
दी हुई आकृति चित्र 10.26 में चतुर्भुज ABCD की सभी भुजाओं को स्पर्श करता हुआ वृत्त खींचा गया है। AB = 6 सेमी, BC = 7 सेमी और CD = 4 सेमी। AD का मान ज्ञात कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 10
दी हुई आकृति के अनुसार,
∵ \(x+y=\overline{A B}=6\) …(1)
∵ \(y+z=\overline{B C}=7\) ….(2)
∵ \(z+t=\overline{C D}=4\) …(3)
समीकरण (1) एवं (3) को जोड़ने पर,
x + y + z + t = 6 + 4 = 10 …(4)
समीकरण (4) में से समीकरण (2) को घटाने पर,
x + t = 10 – 7 = 3
⇒ AD = 3 सेमी
अतः, AD का अभीष्ट मान = 3 सेमी।

प्रश्न 11.
त्रिभुज ABC के अन्तर्गत वृत्त भुजाओं AB = 12 सेमी, BC = 16 सेमी और CA = 8 सेमी को क्रमशः D, E और F . बिन्दुओं पर स्पर्श करता है। AD, BE और CF के मान बताइए।
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 11
हल :
मान लीजिए AD = x, BE = y एवं CF = z हैं|
⇒ AD = AF = x, BE = BD = y एवं CF = CE = z (बाह्य बिन्दु से खींची गई स्पर्श रेखाएँ हैं) तथा AB = 12 सेमी, BC = 16 सेमी एवं CA = 8 सेमी।
अब चित्रानुसार,
AD + DB = AB
⇒ x + y = 12
∵ BE + EC = BC
⇒ y + z = 16
∵ CF + FA = CA
⇒ z + x = 8
समीकरण (1) + (2) + (3) से,
2x + 2y + 2x = 12 + 16 + 8 = 36
⇒ x + y + z = 18
समीकरण (4) में से क्रमशः (2), (3) एवं (1) को घटाने पर,
x = 2, y = 10 एवं z = 6
अर्थात्, AD = 2 सेमी, BE = 10 सेमी तथा CF = 6 सेमी।

प्रश्न 12.
किसी वृत्त के बाह्य बिन्दु से वृत्त पर दो स्पर्श रेखाएँ खींची जाए तो सिद्ध कीजिए कि
(i) स्पर्श रेखाएँ केन्द्र पर बराबर कोण अन्तरित करती हैं।
(ii) उस बाह्य बिन्दु को केन्द्र से मिलाने वाली रेखा स्पर्श रेखाओं के बीच अन्तरित कोण को समद्विभाजित करती है।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 12
ज्ञात है : वृत्त (O, r) पर बाह्य बिन्दु P से दो स्पर्श रेखाएँ PQ एवं PR खींची गई हैं जो वृत्त को क्रमशः Q एवं R बिन्दुओं पर स्पर्श करती हैं।
OQ एवं OR वृत्त की त्रिज्याएँ हैं।
सिद्ध करना है :
(i) ∠POQ = ∠POR
(ii)∠QPO = ∠RPO
उपपत्ति : समकोण ∆OOP एवं ∆ORP में,
∵ OQ = OR [एक ही वृत्त की त्रिज्याएँ हैं]
∵ कर्ण OP = कर्ण OP [उभयनिष्ठ है]
⇒∆OQP = ∆ORP [R.H.S. सर्वांमसमता]
⇒∠POQ = ∠POR [CPCT]
∠QPO = ∠RPO. [CPCT] इति सिद्धम्

NCERT Solutions

प्रश्न 13.
संलग्न आकृति में दो समान त्रिज्या के वृत्त जिनके केन्द्र O तथा O’ हैं परस्पर बिन्दु X पर स्पर्श करते हैं। OO’ को बढ़ाने पर O’ केन्द्र वाले वृत्त को बिन्दु A पर काटता है। बिन्दु A से O केन्द्र वाले वृत्त पर AC एक स्पर्श रेखा है तथा O’D ⊥ AC है। \(\frac { DO’ }{ CO }\) का मान ज्ञात कीजिए।
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 13
हल :
ज्ञात है : समान त्रिज्या वाले दो वृत्त (O, r) एवं (O’, r) जो परस्पर बिन्दु X पर स्पर्श करते हैं।
OO’ बढ़ाने पर वृत्त (O’, r) को बिन्दु A पर प्रतिच्छेद करती है। बिन्दु A से वृत्त (O, r) पर स्पर्श रेखा AC खींची गयी है जो वृत्त (O, r) को बिन्दु C पर स्पर्श करती है। केन्द्र O’ से AC पर O’D ⊥ AC खींचा गया है। OC को मिलाया गया है।
O’A = O’X = OX = r …(1) बराबर वृत्तों की त्रिज्याएँ हैं
⇒AO = AO’ + O’X + XO = r + r + r = 3r …(2)
चूँकि O’D ⊥ AC एवं OC स्पर्श बिन्दु C से जाने वाली त्रिज्या है।
⇒∠ADO’ = ∠ACO = 90° …(3)
अब त्रिभुज ∆ADO’ एवं ∆ACO में,
∵ ∠ADO’ = ∠ACO = 90° [समीकरण (3) से]
∵ ∠O’AD = ∠OAC [उभयनिष्ठ है।
⇒ ∆ADO’ ~ ∆ACO
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 14
अतः, \(\frac { DO’ }{ CO }\) का अभीष्ट मान \(\frac { 1 }{ 3 }\) है।

प्रश्न 14.
दी गई आकृति में, XY तथा X’Y’, O केन्द्र वाले वृत्त की दो समान्तर स्पर्श रेखाएँ हैं तथा एक अन्य स्पर्श रेखा AB, जिसका स्पर्श बिन्दु C है, XY को A तथा X’Y’ को B पर प्रतिच्छेद करती है। सिद्ध कीजिए कि ∠AOB = 90°.
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 15
हल :
ज्ञात है : वृत्त (O, r) की दो स्पर्श रेखाएँ XY || X’Y’ जो वृत्त को क्रमशः P एवं Q पर स्पर्श करती हैं। तीसरी स्पर्श रेखा AB जो वृत्त को C पर स्पर्श करती है तथा XY एवं X’Y’ को क्रमश: A एवं B बिन्दुओं पर प्रतिच्छेद करती है। OA, OB एवं OC को मिलाया गया है। POQ वृत्त का व्यास है। (आकृति देखिए)
चूँकि बाह्य बिन्दु A से वृत्त पर खींची गई स्पर्श रेखाएँ AP एवं AC हैं तथा बिन्दु A को केन्द्र O से मिलाने वाली रेखा AO है एवं हम जानते हैं कि बाह्य बिन्दु से वृत्त पर खींची गई स्पर्श रेखाएँ केन्द्र पर बराबर कोण अन्तरित करती हैं।
⇒∠POA = ∠AOC ….(1)
इसी प्रकार बाह्य बिन्दु B में दो स्पर्श रेखाएँ BQ एवं BC हैं।
⇒∠COB = ∠BOQ …..(2)
लेकिन ∠POA + ∠AOC + ∠COB + ∠BOQ = 180° …..(3)
चूँकि रेखा PQ के बिन्दु O पर एक ही ओर बने कोण हैं।
⇒∠AOC + ∠COB = ∠POA + ∠BOQ = 90°
[समीकरण (1), (2) एवं (3) से]
⇒∠AOB = 90°. [चूँकि ∠AOB = ∠AOC + ∠COB]
इति सिद्धम्

प्रश्न 15.
सिद्ध कीजिए कि वृत्त की किसी चाप के मध्य-बिन्दु पर खींची गयी स्पर्श रेखा, चाप के अन्त्य बिन्दुओं को मिलाने वाली जीवा के समान्तर होती है।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 16
ज्ञात है : वृत्त (O,r) के चाप APB के मध्य-बिन्दु P से स्पर्श रेखा XPY दी है। जीवा AB को मिलाया गया है।
सिद्ध करना है:
AB || XY
रचना : OA, OP एवं OB को मिलाइए, जहाँ OP, जीवा AB को बिन्दु Q पर प्रतिच्छेद करती है।
अब ∆OAQ एवं ∆OBQ में,
∵ OA = OB = r [वृत्त की त्रिज्याएँ हैं]
∵ ∠AOP = ∠BOP
[बराबर चाप \(\widehat{A P}\) एवं \(\widehat{B P}\) द्वारा केन्द्र O पर बने कोण हैं|
∵ OQ = OQ [उभयनिष्ठ है]
⇒∆OAQ = ∆OBQ [SAS सर्वांगसमता]
⇒∠OQA = ∠OQB [CPCT]
⇒∠OQA + ∠OQB = 180° [रैखिक युग्म]
⇒∠ODA = ∠OOB = 90° ….(1) [प्रमेय : 10.1]
⇒∠OPY = 90° …(2)
⇒∠OQB = ∠OPY [समीकरण (1) एवं (2) से]
⇒AB || XY. [चूँकि संगत कोण ∠OQB = ∠OPY]
इति सिद्धम्

प्रश्न 16.
एक समकोण त्रिभुज ABC में ∠B समकोण है। AB को व्यास मानकर एक वृत्त खींचा गया है जो कर्ण AC को बिन्दु P पर प्रतिच्छेद करता है। सिद्ध कीजिए कि बिन्दु P पर खींची गयी
वृत्त की स्पर्श रेखा BC को समद्विभाजित करती है।
हल :
ज्ञात है : ABC एक समकोण त्रिभुज जिसका ∠B = 90°. AB को व्यास लेकर एक वृत्त जिसका केन्द्र O है, खींचा गया है जो AC को बिन्दु P पर प्रतिच्छेद करता है। P पर स्पर्श रेखा XY खींची गयी है जो BC को बिन्दु D पर प्रतिच्छेद करती है।
सिद्ध करना है: DB = DC
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 17
रचना : OP को मिलाइए।
उपपत्ति: ∵ ∠OAP = ∠OPA …(1)
[∆OAP में, OA = OP]
∵∠APX = ∠CPD …(2)
(शीर्षाभिमुख कोण हैं)
∵∠XPA + ∠APO = ∠XPO = 90° …(3)
[स्पर्श रेखा एवं त्रिज्या के बीच कोण है]
⇒∠XPA + ∠OAP = 90° …(4)
[समीकरण (1) एवं (3) से]
⇒∠CPD + ∠OAP = 90° ….(5) [समीकरण (2) एवं (4) से]
लेकिन ∠PCD + ∠OAP = ∠ACB + ∠BAC = 90° …(6)
[समीकरण ∆ABC के न्यूनकोण हैं]
⇒∠CPD = ∠PCD [समीकरण (5) एवं (6) से]
⇒DP = DC ….(7) [बराबर कोणों की सम्मुख भुजाएँ]
लेकिन DP = DB …(8)
[बाह्य बिन्दु D से वृत्त पर खींची गई स्पर्श रेखाएँ।
⇒DB = DC. [समीकरण (7) एवं (8) से]
इति सिद्धम्

NCERT Solutions

प्रश्न 17.
5 cm त्रिज्या वाले वृत्त के केन्द्र O से 13 cm दूर स्थित बिन्दु A से वृत्त पर खींची गई स्पर्श रेखाएँ AP और AQ हैं जो वृत्त को क्रमशः P एवं Q बिन्दुओं पर स्पर्श करती हैं। यदि लघु
चाप PQ के किसी बिन्दु R पर स्पर्श रेखा BC खींची गई है जो AP एवं AQ को क्रमश: B एवं C बिन्दुओं पर प्रतिच्छेद करती है तो ∆ABC की परिमाप ज्ञात कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 18
ज्ञात है : वृत्त के केन्द्र O से OA = 13 cm दूर स्थित बिन्दु A से AP एवं AQ दो स्पर्श रेखाएँ खींची गई हैं। वृत्त के लघु चाप PQ के बिन्दु R पर तीसरी स्पर्श रेखा BC इस प्रकार है कि वह AP एवं AQ को क्रमशः B एवं C बिन्दुओं पर प्रतिच्छेद करती है। वृत्त की त्रिज्या OP = 5 cm है।
समकोण ∆OPA में पाइथागोरस प्रमेय से,
AP² = OA² – OP²
AP² = (13)² – (5)² = 169 – 25 = 144
AP = √144 = 12 cm = AQ …(1) [बाह्य बिन्दु A से खींची गई स्पर्श रेखाएँ]
BP = BR …(2) [बाह्य बिन्दु B से खींची गई स्पर्श रेखाएँ।]
CQ = CR …(3) [बाह्य बिन्दु C से खींची गई स्पर्श रेखाएँ।]
परिमाप (∆ABC) = AB + BC + AC
= AB + BR + CR + AC …(4) [∵ BC = BR + CR]
⇒ परिमाप (ABC) = AB + BP + CQ + AC
[समीकरण (2), (3) एवं (4) से]
⇒ परिमाप (ABC) = AP + AQ
[∵ AB + BP = AP एवं CQ + AC = AQ]
⇒ परिमाप (ABC) = 12 + 12 = 24 cm
[AP = AQ = 12 cm, समीकरण (1) से]
अतः ∆ABC की अभीष्ट परिमाप 24 cm है।

NCERT Class 10th Maths Chapter 10 लघु उत्तरीय प्रश्न

प्रश्न 1.
एक वृत्त की जीवा के सिरों पर खींची गई स्पर्श रेखाएँ वृत्त के बाहर एक-दूसरे को प्रतिच्छेद करती हैं। सिद्ध कीजिए कि प्रतिच्छेद बिन्दु से वृत्त के सम्पर्क तक दोनों स्पर्श रेखाएँ बराबर होंगी। हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 19
ज्ञात है : वृत्त O की जीवा AB के सिरों A और B पर खींची गई स्पर्श रेखाएँ वृत्त के बाहर परस्पर बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है : PA = PB
उपपत्ति: ∵ वृत्त के बाहर किसी बिन्दु से वृत्त पर खींची गई स्पर्श रेखाएँ परस्पर बराबर होती हैं।
∴ PA = PB.
इति सिद्धम्

प्रश्न 2.
दो वृत्त एककेन्द्रीय (concentric) हैं। सिद्ध कीजिए कि बड़े वृत्त की जीवा, जो छोटे वृत्त की स्पर्श रेखा है, सम्पर्क बिन्दु (Point of Contact) पर समद्विभाजित होती है।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 20
ज्ञात है : चित्रानुसार, दो एककेन्द्रीय वृत्त हैं, बड़े वृत्त की जीवा AB छोटे वृत्त को बिन्दु P पर स्पर्श करती है।
सिद्ध करना है : AP = BP
उपपत्ति : चूँकि रेखाखण्ड \(\overline{A P B}\) अन्तःवृत्त की स्पर्श रेखा है। तथा OP त्रिज्या है।
∴ OP ⊥ AB
∵ AB बाह्य वृत्त की जीवा है तथा OP केन्द्र O से इस पर डाला गया लम्ब है।
∴ AP = BP.
इति सिद्धम्

प्रश्न 3.
संलग्न आकृति में 3 सेमी त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखण्ड BD एवं DC की लम्बाइयाँ क्रमश: 6 cm तथा 9 cm है। यदि ∆ABC का क्षेत्रफल 54 वर्ग सेमी है, B. तो भुजाओं AB तथा AC की लम्बाइयाँ ज्ञात कीजिए।
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 21
हल :
दिया है : O केन्द्र वाला त्रिभुज जिसके परिगत एक त्रिभुज ABC है जिसकी भुजाएँ BC, CA एवं AB क्रमश: D, E एवं F बिन्दुओं पर स्पर्श करती हैं। वृत्त की त्रिज्या OD = 3 cm, BD = 6 cm
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 22
एवं DC = 9 cm दिया है, तथा त्रिभुज का क्षेत्रफल ar (ABC) = 54 वर्ग सेमी है। मान लीजिए AF = AE = x cm वृत्त की बाह्य बिन्दु A से खींची गई स्पर्श रेखाएँ हैं।)
∵BF = BD = 6 cm
[बाह्य बिन्दु B से खींची स्पर्श रेखाएँ]
CE = CD = 9 cm [बाह्य बिन्दु C से खींची गई स्पर्श रेखाएँ।
⇒ AB = (x + 6) cm, AC = (x + 9) cm
BC = 6 + 9 = 15 cm
∵ ar (∆OAB) + ar (∆OAC) + ar (∆OBC) = ar (∆ABC)
⇒ \(\frac { 1 }{ 2 }\) x OF x AB + \(\frac { 1 }{ 2 }\) x OE x AC + \(\frac { 1 }{ 2 }\) x OD x BC = 54
⇒ \(\frac { 1 }{ 2 }\) x 3 x (x + 6) + \(\frac { 1 }{ 2 }\) x 3 x (x + 9) + \(\frac { 1 }{ 2 }\) x 3 x 15 = 54
⇒ \(\frac{3}{2} x+9+\frac{3}{2} x+\frac{27}{2}+\frac{45}{2}=54\)
⇒ 3x + 9 + 36 = 54
⇒ 3x = 54 – 45 = 9
⇒ x = \(\frac { 9 }{ 3 }\) = 3
⇒ AB = x + 6 = 3 + 6 = 9
⇒ AC = x + 9 = 3 + 9 = 12
अतः, AB एवं AC की अभीष्ट लम्बाइयाँ क्रमश: 9 cm एवं 12 cm हैं।

प्रश्न 4.
संलग्न चित्र में दी स्पर्श रेखाएँ RQ तथा RP वृत्त के बाह्य बिन्दु R से खींची गयी हैं। वृत्त का केन्द्र O है। यदि ∠PRQ = 120° है, तो सिद्ध कीजिए कि OR = PR + RQ.
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 23
ज्ञात है : बाह्य बिन्दु R से वृत्त पर खींची गई स्पर्श रेखाएँ RP एवं RQ हैं। ∠PRQ = 120° है।
सिद्ध करना है : OR = PR + RQ
रचना : OP एवं OQ को मिलाइए।
उपपत्ति : चूँकि RP एवं RQ बाह्य बिन्दु R से खींची गई स्पर्श रेखाएँ हैं तथा बाह्य बिन्दु R को केन्द्र O से मिलाने वाला रेखाखण्ड OR है।
∠PRO = ∠QRO = \(\frac { 1 }{ 2 }\) ∠PRQ
∠PRO = ∠QRO = \(\frac { 1 }{ 2 }\) x 120°
= 60° [∵ ∠PRQ = 120°, दिया है]
अब समकोण ∆OPR में, \(\frac { PR }{ OR }\) = cosPRO
⇒\(\frac { PR }{ OR }\) = cos 60° = \(\frac { 1 }{ 2 }\) ⇒ PR = \(\frac { 1 }{ 2 }\)OR
इसी प्रकार समकोण ∆OOR में, RQ = \(\frac { 1 }{ 2 }\) OR
⇒PR + RQ = \(\frac { 1 }{ 2 }\)OR + \(\frac { 1 }{ 2 }\)OR = OR
OR = PR + RQ.
इति सिद्धम्

NCERT Solutions

प्रश्न 5.
संलग्न आकृति में एक बाह्य बिन्दु P से O केन्द्र तथा r त्रिज्या वाले वृत्त पर दो स्पर्श रेखाएँ PT तथा PS खींची गई हैं। यदि OP = 2r है, तो दर्शाइए कि
∠OTS = ∠OST = 30°.
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 24
ज्ञात है : PT एवं PS वृत्त की स्पर्श रेखाएँ हैं।
OP = 2r बाह्य बिन्दु P को वृत्त के केन्द्र O से मिलाने वाला रेखाखण्ड एवं OT = OS = r त्रिज्या हैं।
∵ समकोण ∆OTP में, \(\frac { OT }{ OP }\) = cos TOP
⇒ cos TOP = \(\frac{r}{2 r}=\frac{1}{2}\) = cos 60°
∠TOP = 60° …(1)
इसी प्रकार cos SOP = \(\frac{O S}{O P}=\frac{r}{2 r}=\frac{1}{2}\) = cos 60° ⇒ ∠SOP = 60° …(2)
चूँकि ∆OTS में, OS = OT [वृत्त की त्रिज्याएँ]
⇒ ∠OTS = ∠OST = θ [मान लीजिए] …(3)
[बराबर भुजाओं के सम्मुख कोण हैं|
∵ ∆OTS में, ∠OTS + ∠OST + ∠TOS = 180° [∆ के अन्त:कोण हैं]
⇒ ∠OTS + ∠OST + ∠TOP + ∠SOP = 180° [चित्रानुसार]
⇒ θ + θ + 60° + 60° = 180°
⇒ 2θ = 180° – 120° = 60°
⇒ θ = 30°
⇒ ∠OTS = ∠OST = 30°.
इति सिद्धम्

प्रश्न 6.
संलग्न आकृति में O केन्द्र वाले वृत्त के बिन्दु C पर PQ एक स्पर्श रेखा है। यदि AB एक व्यास है तथा ∠CAB = 30° है, तो ∠PCA ज्ञात कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 25
प्रथम विधि : ज्ञात है : O केन्द्र वाले वृत्त के बिन्दु C पर स्पर्श रेखा PQ है, AOB व्यास है। ∠CAB = 30° दिया है
∵∠ACB = 90°
[अर्द्धवृत्त का कोण है]
एवं ∠CAB + ∠ABC + ∠ACB = 180°
[त्रिभुज के अन्तःकोण हैं।]
⇒ 30° + ∠ABC + 90° = 180°
⇒ ∠ABC = 180 – 90° – 30° = 180° – 120° = 60° …(1)
∵∠PCA = ∠ABC …(2) [एकान्तर अवधा के कोण हैं|
⇒ ∠PCA = ∠ABC = 60° [समीकरण (1) एवं (2) से]
वैकल्पिक विधि : OC को मिलाइए।
∆OAC में, ∵OA = OC [एक ही वृत्त की त्रिज्याएँ हैं।
⇒ ∠OCA = ∠OAC …(1) [बराबर भुजाओं के सम्मुख कोण हैं|
लेकिन ∠OAC = ∠ CAB = 30° …(2) [चित्रानुसार]
⇒ ∠OCA = 30° …(3) [समीकरण (1) एवं (2) से]
∵∠PCA + ∠OCA = ∠PCO = 90° …(4) [प्रमेय 10.1 से]
⇒ ∠PCA + 30° = 90°
⇒ ∠PCA = 90° – 30° = 60° समीकरण (3) एवं (4) से]
अतः ∠PCA का अभीष्ट मान 60° है।

प्रश्न 7.
सिद्ध कीजिए कि किसी जीवा के अन्तः बिन्दुओं पर खींची गई स्पर्श रेखाएँ जीवा के साथ समान कोण बनाती हैं।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 26
मान लीजिए वृत्त (O, r) की जीवा PQ के अन्तः बिन्दु P एवं पर PR एवं QR क्रमशः दो स्पर्श रेखाएँ हैं।
सिद्ध करना है:
∠QPR = ∠PQR
रचना : OP एवं OQ को मिलाइए।
उपपत्ति : ∆OPQ में, OP = OQ
[वृत्त की त्रिज्याएँ हैं]
⇒ ∠OPQ = ∠OOP …(1) [बराबर भुजाओं के सम्मुख कोण हैं]
⇒ ∠OPR = ∠OQR = 90° …(2) [स्पर्श रेखा एवं संगत त्रिज्या के मध्य बने कोण हैं]
⇒∠OPR – ∠OPQ = ∠OOR – ∠OOP [समीकरण (2)- (1) से]
⇒∠QPR = ∠PQR. [चित्रानुसार]
इति सिद्धम्

प्रश्न 8.
यदि एक बाह्य बिन्दु P से a त्रिज्या तथा O केन्द्र वाले वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण 60° हो, तो OP की लम्बाई ज्ञात कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 27
मान लीजिए वृत्त (O, a) के बाह्य बिन्दु P से वृत्त पर दो स्पर्श रेखाएँ PQ एवं PR खींची गई हैं। OP को मिलाया गया है। ∠QPR = 60° (दिया हैं) OQ एवं OR को मिलाया गया है। OQ = OR = a (दिया है)।
चूँकि बाह्य बिन्दु को वृत्त के केन्द्र से मिलाने वाली रेखाखण्ड दोनों स्पर्श रेखाओं के मध्य कोण को समद्विभाजित करती है।
∠QPO = \(\frac { 1 }{ 2 }\)∠QPR = \(\frac { 1 }{ 2 }\) x 60° = 30°
अब समकोण ∆OOP में,
sin QPO = \(\frac { OQ }{ OP }\)
sin 30° = \(\frac{a}{O P}=\frac{1}{2}\)
OP = 2 x a = 2a.
अतः, OP के अभीष्ट लम्बाई का मान 2a है।

NCERT Solutions

प्रश्न 9.
किसी बाह्य बिन्दु P से O केन्द्र वाले वृत्त पर दो स्पर्श रेखाएँ PA एवं PB खींची गयी हैं। वृत्त के एक बिन्दु E पर एक अन्य स्पर्श रेखा खींची गयी है जो PA एवं PB को क्रमशः C एवं D बिन्दुओं पर प्रतिच्छेद करती है। यदि PA = 10 cm हो, तो ∆PCD की परिमाप ज्ञात कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 28
ज्ञात है : बाह्य बिन्दु P से वृत्त पर खींची गई दो स्पर्श रेखाएँ
PA = PB = 10 cm …(1)
बिन्दु E पर अन्य स्पर्श रेखा CD जो PA एवं PB को क्रमशः बिन्दु C एवं D पर प्रतिच्छेद करती है।
चूँकि बाह्य बिन्दु C से वृत्त पर खींची गई स्पर्श रेखाएँ CA एवं CE हैं
CA = CE [प्रमेय : 10.2]
चूँकि बाह्य बिन्दु D से वृत्त पर खींची गई स्पर्श रेखाएँ DE एवं DB है।
DB = DE ….(3) [प्रमेय : 10.2]
परिमाप ∆(PCD) = PC + CD + PD
= PC + CE + DE + PD …(4) [∵ CD = CE + DE]
= PC + CA + PD + DB [समीकरण (2), (3) एवं (4) से]
= PA + PB [चित्रानुसार]
परिमाप ∆(PCD) = 10 + 10 = 20 cm [समीकरण (1) से मान रखने पर]
अतः, ∆PCD की अभीष्ट परिमाप 20 cm है।

प्रश्न 10.
संलग्न आकृति में यदि AB, O केन्द्र वाले एक वृत्त की एक जीवा है। AOC वृत्त का व्यास एवं AT एक स्पर्श रेखा है जो वृत्त को बिन्दु A पर स्पर्श करती है। BC को मिलाया गया है। सिद्ध कीजिए कि : ∠BAT = ∠ACB.
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 29
ज्ञात है : O केन्द्र वाला वृत्त जिसका व्यास AOC, AB एक जीवा एवं AT बिन्दु A पर एक स्पर्श रेखा है। CB को मिलाया गया है।
सिद्ध करना है: ∠BAT = ∠ACB.
उपपत्ति :
∵ ∠ABC = 90° [अर्द्धवृत्त का कोण है]
⇒ ∠BAC + ∠ACB = 90° ….(1) [समकोण ∆ के न्यूनकोण है]
∵ ∠BAT + ∠BAC = ∠OAT = 90° ….(2) [प्रमेयः 10.1 से]
⇒ ∠BAT + ∠BAC = ∠BAC + ∠ACB. [समीकरण (1) एवं (2) से]
⇒ ∠BAT = ∠ACB.
इति सिद्धम्

प्रश्न 11.
आकृति 10.45 में PQ एवं PR दो स्पर्श रेखाएँ एक वृत्त पर खींची गई हैं जिनमें ∠RPQ = 30° एक जीवा RS स्पर्श रेखा PQ के समान्तर खींची गई है। ∠RQS का मान ज्ञात कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 30
ज्ञात है : PQ एवं PR वृत्त की दो स्पर्श रेखाएँ हैं तथा जीवा RS || स्पर्श रेखा PQ एवं ∠RPQ = 30°.
∠RQS का मान ज्ञात करना है।
चूँकि ∆PQR में, PQ = PR
[प्रमेय : 6.2 से]
⇒∠PQR = ∠PRQ …(1) [बराबर भुजाओं के सम्मुख कोण]
लेकिन ∠PQR + ∠PRQ + ∠RPQ = 180° [त्रिभुज के अन्त:कोण हैं]
⇒2∠PQR + 30° = 180°
[समीकरण (1) एवं (2) से तथा ∠RPQ = 30°, दिया है]
⇒2∠PQR = 180° – 30° = 150°
⇒∠PQR = \(\frac { 150 }{ 2 }\) = 75° ….(3)
∠RSQ = ∠PRO = 75° …(4) [एकान्तर अवधा का कोण]
एवं एकान्तर कोण
∠SRQ = ∠PQR = 75° …(5)
[RS || PQ एवं RQ तिर्यक रेखा है]
∵ ∆ RQS में, ∠RQS + ∠RSQ + ∠SRQ = 180° [अन्त:कोण]
⇒∠RQS + 75° + 75° = 180°
[समीकरण (4) एवं (5) से मान रखने पर]
⇒∠RQS = 180° – 150° = 30°
अतः, ∠RQS का अभीष्ट मान = 30°.

प्रश्न 12.
एक वृत्त के बिन्दु C पर स्पर्श रेखा एवं वृत्त का व्यास AB (बढ़ाने पर) बिन्दु P पर प्रतिच्छेद करते हैं। यदि ∠PCA = 110° तो ∠CBA का मान ज्ञात कीजिए। (देखिए संलग्न आकृति 10.46)
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 31
ज्ञात है : O केन्द्र वाले वृत्त के बिन्दु C पर खींची गयी स्पर्श रेखा एवं व्यास AB को बढ़ाने पर परस्पर बिन्दु P पर प्रतिच्छेद करते हैं। CO एवं CB को मिलाया गया है। ∠PCA = 110° दिया है। ∠CBA का मान ज्ञात करना है।
चूँकि ∠PCA = 110° (दिया है) …(1)
चूँकि ∠ACB = 90° [अर्द्धवृत्त का कोण है] …(2)
⇒∠OCA = 110° – 90° = 20° [समीकरण (1) – (2) से] …(3)
चूँकि ∆OAC में, OA = OC [वृत्त की त्रिज्याएँ]
⇒∠OAC = ∠OCA …(4) बराबर भुजाओं के सम्मुख कोण हैं]
⇒∠BAC = ∠OAC = 20° …(5) [समीकरण (3) एवं (4) से तथा चित्रानुसार]
∵ ∆CBA में, ∠CBA + LACB + ∠OAC = 180° [अन्त:कोण हैं]
⇒∠CBA + 90° + 20° = 180° [समीकरण (2) एवं (5) से मान रखने पर]
⇒∠CBA = 180° – 110° = 70°
अतः, ∠CBA का अभीष्ट मान = 70° है।

NCERT Solutions

प्रश्न 13.
दो संकेन्द्रीय वृत्तों में से बाह्य वृत्त की त्रिज्या 5 cm है एवं इसकी एक 8 सेमी लम्बी जीवा अन्तः वृत्त की स्पर्श रेखा है तो अन्तः वृत्त की त्रिज्या ज्ञात कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 32
ज्ञात है : O केन्द्र वाले दो संकेन्द्रीय वृत्त जिनमें बाह्य वृत्त की जीवा PQ = 8 cm अन्त:वृत्त की स्पर्श रेखा है तथा बिन्दु R पर उसे स्पर्श करती है। बाह्य वृत्त की त्रिज्या OQ = 5 cm दी है। मान लीजिए कि अन्त:वृत्त की त्रिज्या OR = r cm है। चूँकि OR स्पर्श बिन्दु R एवं केन्द्र O को मिलाने वाली त्रिज्या है, अतः
OR ⊥ PQ अर्थात् ∠ORQ = 90° [प्रमेय : 10.1 से]
चूँकि OR केन्द्र O से बाह्य वृत्त की जीवा PQ पर डाला गया लम्ब है।
PR = RQ = \(\frac { 1 }{ 2 }\), PQ = \(\frac { 1 }{ 2 }\) x 8 cm = 4 cm [∴PQ = 8 cm दिया है]
अब समकोण ∆ORQ में पाइथागोरस प्रमेय से,
OR = \(\sqrt{O Q^{2}-R Q^{2}}\)
= \(r=\sqrt{(5)^{2}-(4)^{2}}=\sqrt{25-16}=\sqrt{9}\)
= 3 cm
अतः, अन्तःवृत्त की त्रिज्या की अभीष्ट लम्बाई 3 cm है।

प्रश्न 14.
बाह्य बिन्दु P से O केन्द्र वाले वृत्त पर दो स्पर्श रेखाएँ PQ एवं PR खींची गयी हैं। सिद्ध कीजिए कि QORP चक्रीय चतुर्भुज है।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 33
ज्ञात है : केन्द्र O वाले वृत्त पर बाह्य बिन्दु P से खींची गयी दो स्पर्श रेखाएँ PQ एवं PR खींची गयी हैं। OQ एवं OR को मिलाया गया है।
सिद्ध करना है : ₹QORP एक चक्रीय चतुर्भुज है।
उपपत्ति : चूँकि OQ स्पर्श रेखा PQ के स्पर्श बिन्दु Q से जाने वाली त्रिज्या है
OQ ⊥ PQ अर्थात् ∠OQP = 90° …(1) [प्रमेय : 10.1]
एवं OR, स्पर्श रेखा PR के स्पर्श बिन्दु R से जाने वाली त्रिज्या है
OR ⊥ PR अर्थात् ∠ORP = 90° ….(2) [प्रमेय : 10.1 से]
∠OQP + ∠ORP = 90° + 90° = 180° [समीकरण (1) व (2) से]
₹QORP एक चक्रीय चतुर्भुज है। [चूँकि सम्मुख कोणों का युग्म सम्पूरक है]
इति सिद्धम्

प्रश्न 15.
सिद्ध कीजिए कि दो परस्पर प्रतिच्छेदी रेखाओं को स्पर्श करने वाले वृत्त का केन्द्र उन रेखाओं के मध्य बने कोण के समद्विभाजक पर स्थित होगा।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 34
मान लीजिए दो प्रतिच्छेदी रेखाओं PQ एवं PR का प्रतिच्छेदी बिन्दु P है तथा एक केन्द्र O वाला वृत्त इनको क्रमशः Q एवं R बिन्दुओं पर स्पर्श करता है। OQ, OR एवं OP को मिलाया गया है।
सिद्ध करना है : केन्द्र O, ∠QPR के समद्विभाजक पर स्थित है अर्थात्
∠QPO = ∠RPO.
उपपत्ति : चूँकि PQ स्पर्श रेखा एवं OQ स्पर्श बिन्दु से जाने वाली त्रिज्या है।
⇒ OQ ⊥ PQ अर्थात् ∠OQP = 90° …(1) [प्रमेय 10.1 से]
OR ⊥ PR अर्थात् ∠ORP = 90° …(2) [प्रमेय 10.1 से]
⇒ ∆OQP एवं ∆ORP समकोण त्रिभुज हैं
अब समकोण ∆OQP एवं ∆ORP में,
∵ कर्ण OP = कर्ण OP [उभयनिष्ठ है]
∵ OQ = OR [एक ही वृत्त की त्रिज्याएँ हैं]
⇒ ∆OQP = ∆ORP [RHS सर्वांगसमता]
⇒ ∠QPO = ∠RPO [CPCT] इति सिद्धम्

प्रश्न 16.
संलग्न आकृति में, O केन्द्र वाले वृत्त की PQ एक जीवा है तथा PT एक स्पर्श रेखा है। यदि ∠QPT = 60° है, तो ∠PRQ ज्ञात कीजिए।
हल :
NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 35
दिया है : O केन्द्र वाले वृत्त में PQ एक जीवा तथा PT एक स्पर्श रेखा तथा ∠OPT = 60°, OP एवं OQ को मिलाइए।
:: चूँकि ∆OPQ में, OP = OR
[वृत्त की त्रिज्याएँ हैं]
⇒∠OPQ = ∠OOP …(1) [बराबर भुजाओं के सम्मुख कोण हैं।]
∵∠OPT = 90° [OP ⊥ PT] [प्रमेय 10.1 से]
∵∠QPT = 60° [दिया है।]
⇒∠OPQ = ∠OPT – ∠QPT = 90° – 60° = 30° …(2)
⇒∠OPQ+ ∠OQP = 30° + 30° = 60° …(3) [समीकरण (1) एवं (2) से]
∵∠OPQ + ∠OQP + ∠POQ = 180° . …(4) [त्रिभुज के अन्तः कोण हैं]
⇒∠POQ = 180° – 60° = 120° [समीकरण (4) – (3) से]
⇒प्रतिवर्ती ∠POQ = 360° – ∠POQ = 360° – 120° = 240°
चूँकि ∠PRQ = \(\frac { 1 }{ 2 }\) प्रतिवर्ती ∠POQ [चूँकि वृत्त के केन्द्र पर बना कोण शेष परिधि पर बने कोण का दूना होता है।]
⇒∠PRQ = \(\frac { 1 }{ 2 }\) x 240° = 120°
अतः, ∠PRQ का अभीष्ट मान = 120°.

NCERT Solutions

NCERT Class 10th Maths Chapter 10 अति लघु उत्तरीय प्रश्न

निम्नलिखित प्रश्नों में सत्य एवं असत्य कथन लिखिए तथा अपने उत्तर की पुष्टि कीजिए।

प्रश्न 1.
यदि एक जीवा वृत्त के केन्द्र पर 60° का कोण अन्तरित करती है तो A एवं B पर खींची गई स्पर्श रेखाओं के बीच का कोण भी 60° होगा।
हल :
असत्य कथन है, क्योंकि यह कोण 120° होगा।

प्रश्न 2.
किसी वृत्त पर बाह्य बिन्दु से खींची गयी स्पर्श रेखा की लम्बाई सदैव उसकी त्रिज्या से अधिक होगी।
हल :
कथन असत्य है, क्योंकि यह अधिक हो सकती है और नहीं भी हो सकती।

प्रश्न 3.
किसी O केन्द्र वाले वृत्त पर बाह्य बिन्दु P से खींची गयी स्पर्श रेखा की लम्बाई सदैव OP से कम होगी।
हल :
कथन सत्य है क्योंकि OP कर्ण होगी।

प्रश्न 4.
किसी वृत्त की दो स्पर्श रेखाओं के बीच बना कोण 0° भी हो सकता है।
हल :
कथन सत्य है, क्योंकि दो समानान्तर स्पर्श रेखाओं के बीच बना कोण शून्य (0) होगा।

प्रश्न 5.
यदि 0 केन्द्र एवं a त्रिज्या वाले किसी वृत्त पर बाह्य बिन्दु P से खींची गयी दो स्पर्श रेखाओं के बीच का कोण 90° हो, तो OP = a √2 होगा।
हल :
कथन सत्य है क्योंकि दोनों स्पर्श रेखाएँ एवं संगत त्रिज्याएँ a भुजा वाला वर्ग बनाएँगे तथा OP उसका विकर्ण होगा।

NCERT Solutions

प्रश्न 6.
यदि केन्द्र O एवं त्रिज्या a वाले वृत्त पर बाह्य बिन्दु P से खींची गई स्पर्श रेखाओं के बीच बना कोण 60° हो तो OP = a √3.
हल :
कथन असत्य है, क्योंकि इसी स्थिति में OP = 2a होगा।

प्रश्न 7.
एक समद्विबाहु ∆ABC जिसमें AB = AC है के परिवृत्त के बिन्दु A पर खींची गयी स्पर्श रेखा BC के समान्तर होती है।
हल :
कथन सत्य है, क्योंकि AB आधार BC एवं स्पर्श रेखा AX के साथ बराबर एकान्तर कोण बनाते हैं।

प्रश्न 8.
यदि अनेक वृत्त रेखाखण्ड PQ को बिन्दु A पर स्पर्श करते हैं तो उनके केन्द्र PQ के लम्ब समद्विभाजक पर स्थित होंगे।
हल :
कथन असत्य हैं, क्योंकि यह तभी होगा जब कि स्पर्श बिन्दु A, PQ का मध्य बिन्दु हो।

प्रश्न 9.
यदि अनेक वृत्त रेखाखण्ड PQ के अन्त्यः बिन्दु P एवं Q से गुजरते हैं, तो उनके केन्द्र PQ के लम्ब समद्विभाजक पर स्थित होंगे।
हल :
कथन सत्य है, क्योंकि रेखाखण्ड PQ उन वृत्तों की एक जीवा होगी और वृत्तों के केन्द्र जीवा के लम्ब समद्विभाजक पर स्थित होते हैं।

प्रश्न 10.
AB किसी वृत्त का व्यास है तथा AC उसकी एक जीवा इस प्रकार है कि ∠BAC = 30° यदि C पर खींची गई स्पर्श रेखा AB को बढ़ाने पर उसे D पर प्रतिच्छेद करती है तो BC = BD
हल :
कथन सत्य है क्योंकि ∆ACB में, ∠ACB = 90° [अर्द्ध वृत्त का कोण है।
एवं ∠BAC = 30° [दिया है
तो शेष कोण ∠ABC = 60° = ∠BCD + ∠BDC [∆BDC का बहिष्कोण है]
लेकिन ∠BCD = ∠BAC = 30° [एकान्तर अवधान कोण है।
⇒∠BDC = 60° – 30° = 30°
⇒∠BCD = ∠BDC = 30°
⇒BC = BD.

NCERT Class 10th Maths Chapter 10 वस्तुनिष्ठ प्रश्न

NCERT Class 10th Maths Chapter 10 बहु-विकल्पीय प्रश्न

प्रश्न 1.
यदि दो संकेन्द्रीय वृत्तों की त्रिज्याएँ क्रमश: 4 cm एवं 5 cm हैं तो बाह्य वृत्त की प्रत्येक वह जीवा जो अन्तः वृत्त की स्पर्श रेखा हो, की लम्बाई होगी :
(a) 3 cm
(b) 6 cm
(c) 9 cm
(d) 1 cm.
उत्तर:
(b) 6 cm

प्रश्न 2.
किसी वृत्त के व्यास AB के सिरे पर XAY स्पर्श रेखा खींची गयी है। वृत्त की त्रिज्या 5 cm है। A से 8 cm की दूरी पर स्थित जीवा CD || XY की लम्बाई होगी :
(a) 4 cm
(b) 5 cm
(c) 6 cm
(d) 8 cm.
उत्तर:
(d) 8 cm.

NCERT Solutions

प्रश्न 3.
यदि 60° कोण पर झुकी दो स्पर्श रेखाएँ 3 cm त्रिज्या वाले वृत्त पर खींची जाती है तो प्रत्येक स्पर्श रेखा की लम्बाई बराबर है :
(a) \(\frac{3 \sqrt{3}}{2}\) cm
(b) 6 cm
(c) 3 cm
(d) 3√3 cm.
उत्तर:
(d) 3√3 cm.

प्रश्न 4.
किसी वृत्त के बाह्य बिन्दु से अधिकतम स्पर्श रेखाएँ खींची जा सकती हैं :
(a) 1
(b) 2
(c) 3
(d) कोई नहीं।
उत्तर:
(b) 2

प्रश्न 5.
किसी बाह्य बिन्दु से वृत्त पर खींची गई स्पर्श रेखाएँ परस्पर होती हैं :
(a) लम्बवत्
(b) समानान्तर
(c) समान
(d) इनमें से कोई नहीं।
उत्तर:
(c) समान

रिक्त स्थानों की पूर्ति

1. किसी बाह्य बिन्दु से वृत्त पर खींची गयी स्पर्श रेखाएँ परस्पर ……… होती हैं।
2. स्पर्श बिन्दु से जाने वाली त्रिज्या स्पर्श रेखा पर ……… होती है।
3. बाह्य बिन्दु से वृत्त पर खींची स्पर्श रेखाओं के बीच बना कोण एवं स्पर्श बिन्दुओं से जाने वाली त्रिज्याओं के बीच बने कोण आपस में ……… होते हैं।
4. बाह्य बिन्दु से वृत्त पर खींची गयी स्पर्श रेखाएँ केन्द्र पर ……… कोण अन्तरित करती हैं।
5. केन्द्र को बाह्य बिन्दुओं से मिलाने वाली रेखा उस बिन्दु से खींची गयी स्पर्श रेखाओं के मध्य कोण को ……. करती है।
उत्तर-
1. बराबर,
2. लम्ब,
3. सम्पूरक,
4. बराबर,
5. समद्विभाजित।

जोड़ी मिलाइए

NCERT Class 10th Maths Solutions Chapter 10 वृत्त Examples and MCQs 36
उत्तर-
1. →(c),
2. →(d),
3. →(e),
4. →(a),
5. →(b).

NCERT Solutions

सत्य/असत्य कथन

1. किसी बाह्य बिन्दु से वृत्त पर खींची गयी स्पर्श रेखाएँ बराबर होती हैं।
2. किसी बाह्य बिन्दु से वृत्त पर खींची गयी स्पर्श रेखाएँ असमान होती हैं।
3. बाह्य बिन्दु से किसी वृत्त पर खींची गयी स्पर्श रेखाएँ केन्द्र पर बराबर कोण अन्तरित करती हैं।
4. बाह्य बिन्दु से वृत्त पर खींची गयी स्पर्श रेखाओं की लम्बाइयाँ सदैव वृत्त की त्रिज्या के बराबर होती हैं।
5. बाह्य बिन्दु से वृत्त पर खींची गयी स्पर्श रेखाएँ स्पर्श बिन्दुओं को मिलाने वाली जीवा के साथ बराबर कोण आन्तरित करती हैं।
6. वृत्त के केन्द्र से जीवा पर डाला गया लम्ब, जीवा को समद्विभाजित करता है। (2019)
7. वृत्त को दो बिन्दुओं पर प्रतिच्छेद करने वाली रेखा को छेदक रेखा कहते हैं। (2019)
उत्तर-
1. सत्य,
2. असत्य
3. सत्य,
4. असत्य,
5. सत्य,
6. सत्य,
7. सत्य।

एक शब्द/वाक्य में उत्तर

1. किसी वृत्त को केवल एक बिन्दु पर प्रतिच्छेद करने वाली रेखा क्या कहलाती है।
2. स्पर्श रेखा और वृत्त के उभयनिष्ठ बिन्दु को क्या कहते हैं?
3. किसी वृत्त पर कितनी स्पर्श रेखाएँ खींची जा सकती हैं?
4. एक वृत्त की कितनी समान्तर स्पर्श रेखाएँ हो सकती हैं? (2019)
उत्तर-
1. स्पर्श रेखा,
2. स्पर्श बिन्दु,
3. अनन्तशः अनेक,
4. दो।

Previous Post

NCERT Class 10th Maths Solutions Chapter 10 Circles Ex 10.2

Next Post

NCERT Class 10th Maths Solutions Chapter 10 वृत्त Ex 10.2

Related

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.