NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6

by Sudhir
December 28, 2021
in 10th Maths, Class 10th Solutions
Reading Time: 9 mins read
0
NCERT Class 10th Maths Solutions
1
VIEWS
Share on FacebookShare on Twitter

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 6 Triangles Ex 6.6. These solutions are based on new NCERT Syllabus.

NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6

Question 1.
In the figure, PS is the bisector of ∠QPR of ∆PQR. Prove that \(\frac{Q S}{S R}=\frac{P Q}{P R}\).
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 1
Solution:
We have, ∆PQR in which PS is the bisector of ∠QPR.
∴ ∠QPS = ∠RPS
Let us draw RT || PS to meet QP produced at T, such that
∠1 = ∠RPS [Alternate angles]
Also, ∠3 = ∠QPS [Corresponding angles]
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 2
But ∠RPS = ∠QPS [Given]
∴ ∠1 = ∠3
∴ PT = PR
Now, in ∆QRT, PS || RT [By construction]
∴ Using the Basic Proportionality Theorem, we have
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 3

Question 2.
In the figure, D is a point on hypotenuse AC of ∆ABC, such that BD ⊥ AC, DM ⊥ BC and DN ⊥ AB. Prove that
(i) DM2 = DN.MC
(ii) DN2 = DM.AN
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 4
Solution:
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 5
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 6
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 7

Question 3.
In the figure, ABC is a triangle in which ∠ABC > 90° and AD ⊥ CB produced. Prove that AC2 – AB2 + BC2 + 2BC.BD
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 8
Solution:
∆ABC is a triangle in which ∠ABC > 90° and AD ⊥ CB produced.
∵ In ∆ADB, ∠D = 90°
∴ Using Pythgoras Theorem, we have
AB2 = AD2 + DB2 ….. (1)
In right ∆ADC, ∠D = 90°
∴ Using Pythagoras Theorem, we have
AC2 = AD2 + DC2
= AD2 + [BD + BC]2
= AD2 + [BD2 + BC2 + 2BD.BC]
⇒ AC2 = [AD2 + DB2] + BC2 + 2BC – BD
⇒ AC2 = AB2 + BC2 + 2BC – BD [From (1)] Thus, AC2 = AB2 + BC2 + 2 BC.BD

NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6

Question 4.
In the figure, ABC is a triangle in which ∠ABC < 90° and AD ⊥ BC. Prove that AC2 = AB2 + BC2 – 2BC.BD.
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 9
Solution:
We have ∆ABC in which ∠ABC < 90°
and AD ⊥ BC
In right ∆ADB, ∠D = 90°
Using Pythagoras Theorem, we have
AB2 = AD2 + BD2 …… (1)
Also in right ∆ADC, ∠D = 90°
Using Pythagoras Theorem, we have AC2 = AD2 + DC2
= AD2 + [BC – BD]2 = AD2 + [BC2 + BD2 – 2BC.BD]
= [AD2 + BD2] + BC2 – 2BC.BD = AB2 + BC2 – 2BC.BD [From (1)]
Thus, AC2 = AB2 + BC2 – 2BC.BD, which is the required relation.

Question 5.
In the figure, AD is a median of triangle ABC and AM ⊥ BC. Prove that
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 10
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 11
Solution:
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 12
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 13
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 14

Question 6.
Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
Solution:
We have a parallelogram ABCD.
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 15
AC and BD are the diagonals of parallelogram ABCD.
∵ Diagonals of a parallelogram bisect each other.
∴ O is the mid-point of AC and BD.
Now, in ∆ABC, BO is a median.
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 16
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 17

Question 7.
In the figure, two chords AB and CD intersect each other at the point P. Prove that:
(i) ∆APC – ∆DPB
(ii) AP.PB = CP.DP
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 18
Solution:
We have two chords AB and CD of a circle. AB and CD intersect at P.
(i) In ∆APC and ∆DPB,
∴ ∠APC = ∠DPB ….. (1)
[Vertically opp. angles]
∠CAP = ∠BDP …… (2)
[Angles in the same segment]
From (1) and (2) and using AA similarity, we have
∆APC ~ ∆DPB

(ii) Since, ∆APC ~ ∆DPB [As proved above]
∴ Their corresponding sides are proportional,
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 19
⇒ AP.BP = CP.DP, which is the required relation.

Question 8.
In the figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) ∆PAC – ∆PDB
(ii) PA.PB = PC.PD
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 20
Solution:
We have two chords AB and CD when produced meet outside the circle at P.
(i) Since in a cyclic quadrilateral, the exterior angle is equal to the interior opposite angle,
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 21

Question 9.
In the figure, D is a point on side BC of ∆ABC such that \(\frac{B D}{C D}=\frac{A B}{A C}\). Prove that AD is the bisector of ∠BAC.
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 22
Solution:
Let us produce BA to E such that AE = AC
Join EC.
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 23
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 24

NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6

Question 10.
Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds ?
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 25
Solution:
Let us find the length of the string that Nazima has out.
In right ∆OAB, OB2 = OA2 + AB2
∴ OB2 = (2.4)2 + (1.8)2
⇒ OB2 = 5.76 + 3.24 = 9.00
\(\Rightarrow \quad O B=\sqrt{9.00}=3 \mathrm{m}\)
i.e., Length of string she has out = 3 m
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 26
Since, the string is pulled in at the rate of 5 cm/sec,
∴ Length of the string pulled in 12 seconds
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 27
In the ∆PBC, let PB be the required horizontal distance of fly.
Since, PB2 = PC2 – BC2 [By Pythagoras theorem]
∴ PB2 = (2.4)2 – (1.8)2 = 5.76 – 3.24 = 2.52
NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.6 28
Thus, the horizontal distance of the fly from Nazima after 12 seconds
= (1.59 + 1.2) m (approximately)
= 2.79 m (approximately)

Previous Post

NCERT Class 10th Maths Solutions Chapter 6 Triangles Ex 6.5

Next Post

NCERT Class 10th Maths Solutions Chapter 6 त्रिभुज Examples and MCQs

Related

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.