NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

by Sudhir
December 28, 2021
in 10th Maths, Class 10th Solutions
Reading Time: 11 mins read
0
NCERT Class 10th Maths Solutions
4
VIEWS
Share on FacebookShare on Twitter

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 4 Quadratic Equations Ex 4.3. These solutions are based on new NCERT Syllabus.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3
Question 1.
Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
(i) 2x2 – 7x + 3 = 0
(ii) 2x2 + x – 4 = 0
(iii) 4x2 + 4\(\sqrt{3}\)x + 3 = 0
(iv) 2x2 + x + 4 = 0
Solution:
(i) We have, 2x2 – 7x + 3 = 0
Dividing both sides by 2, we get
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 1

(ii) We have 2x2 + x – 4 = 0
Divide both sides by 2, we get
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 2

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 3
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 4

(iv) We have, 2x2 + x + 4 = 0
Dividing both sides by 2, we get
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 5
Since, the square of a number cannot be negative.
∴ There is no real value of x satisfying the given equation.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

Question 2.
Find the roots of the following quadratic equations, using the quadratic formula:
(i) 2x2 – 7x + 3 = 0
(ii) 2x2 + x – 4 = 0
(iii) 4x2 + 4\(\sqrt{3}\)x + 3 = 0
(iv) 2x2 + x + 4 = 0
Solution:
(i) Comparing the given equation with ax2 + bx + c = 0, we get a = 2, b = -7, c = 3
∴ b2 – 4ac = (-7)2 – 4(2)(3) = 49 – 24 = 25 > 0
Since b2 – 4ac > 0, therefore the given equation has real roots, which are given by
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 6
Taking negative sign, x = \(\frac{7-5}{4}=\frac{2}{4}=\frac{1}{2}\)
Thus, the roots of the given equation are 3 and \(\frac{1}{2}\).

(ii) Comparing the given equation with ax2 + bx + c = 0, we get a = 2, b = 1, c = – 4
b2 – 4ac = (1)2 – 4(2)(-4) = 1 + 32 = 33 > 0
Since b2 – 4ac > 0, therefore the given equation has real roots, which are given by
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 7

(iii) Comparing the given equation with
ax2 + bx + c = 0, we get
a = 4, b= 473, c = 3
b2 – 4ac = (473)2 – 4(4)(3)
= (16 × 3) – 48 = 48 – 48 = 0
Since b2 – 4ac = 0, therefore the given equation has real and equal roots, which are given by
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 8

(iv) Comparing the given equation with ax2 + bx + c = 0, we get a = 2, b = 1, c = 4
b2 – 4ac = (1 )2 – 4(2)(4) = 1 – 32 = -31 < 0 Since
b2 – 4ac < 0, therefore the given equation does not have real roots.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

Question 3.
Find the roots of the following equations:
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 9
Solution:
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 10
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 11
Taking negative sign, x = \(\frac{3-1}{2}\)
Thus, the required roots of the given equation are 2 and 1.

Question 4.
The sum of the reciprocals of Rehman’s ages, (in years) 3 years ago and 5 years from now is \(\frac{1}{3}\). Find his present age.
Solution:
Let the present age of Rehman be x years.
3 years ago, Rehman’s age = (x – 3) years
5 years later, Rehman’s age = (x + 5) years
According to the condition,
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 12
⇒ 3(2x + 2) = x2 + 2x – 15
⇒ 6x + 6 = x2 + 2x – 15
⇒ x2 + 2x – 6x – 15 – 6 = 0
⇒ x2 – 4x – 21 = 0 …(1)
Comparing equation (1) with ax2 + bx + c = 0,
we get a = 1, b = -4, c = -21
b2 – 4ac = (-4)2 – 4(1)(-21) = 16 + 84 = 100
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 13
Since, age cannot be negative.
∴ x ≠ -3 ⇒ x = 7
So, the present age of Rehman = 7 years

Question 5.
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.
Solution:
Let Shefali’s marks in Mathematics = x
∴ Marks in English = 30 – x
According to the condition,
(x + 2) × [(30 – x) – 3] = 210
⇒ (x + 2) × (30 – x – 3) = 210
⇒ (x + 2)(- x + 27) = 210
⇒ -x2 + 25x + 54 = 210
⇒ -x2 + 25x + 54 – 210 = 0
⇒ -x2 + 25x – 156 = 0
⇒ x2 – 25x + 156 = 0 …(1)
Comparing equation (1) with ax2 + bx + c = 0, we get a = 1,b = -25, c = 156
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 14
When x = 12, then 30 – x = 30 – 12 = 18 Thus, marks in Mathematics = 13, marks in English = 17 or
Marks in Mathematics = 12, Marks in English = 18.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

Question 6.
The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
Solution:
Let the shorter side i.e., breadth = x metres
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 15
∴ The longer side i.e., length = (x + 30) metres and diagonal = (x + 60) metres
In a rectangle,
(diagonal)2 = (breadth)2 + (length)2
⇒ (x + 60)2 = x2 + (x + 30)2
⇒ x2 + 120 x + 3600 = x2 + x2 + 60x + 900
⇒ x2 + 120x + 3600 = 2x2 + 60x + 900
⇒ 2x2 – x2 + 60x – 120x + 900 – 3600 = 0
⇒ x2 – 60x – 2700 = 0 …(1)
Comparing equation (1) with ax2 + bx + c = 0, we get a = 1, b = -60, c = -2700
∴ b2 – 4ac = (-60)2 – 4(1)(-2700)
⇒ b2 – 4ac = 3600 + 10800
⇒ b2 – 4ac = 14400
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 16
Since breadth cannot be negative,
x ≠ -30 ⇒ x = 90
∴ x + 30 = 90 + 30 = 120
Thus, the shorter side is 90 m and the longer side is 120 m.

Question 7.
The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.
Solution:
Let the larger number be x.
Since, (smaller number)2 = 8(larger number)
⇒ (smaller number)2 = 8
⇒ smaller number = \(\sqrt{8 x}\)
According to the condition,
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 17
Thus, the smaller number = 12 or -12
Thus, the two numbers are 18 and 12 or 18 and -12.

Question 8.
A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
Solution:
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 18
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 19
Thus, speed of the train is 40 km/hr.

Question 9.
Two water taps together can fill a tank in \(9 \frac{3}{8}\) hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
Solution:
Let the smaller tap fills the tank in x hours
∴ The larger tap fills the tank in (x – 10) hours.
Amount of water flowing through both the taps in one hour
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 20
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 21
[ ∵ Time cannot be negative]
x = 25 ⇒ x – 10 = 25 – 10 = 15
Thus, time taken to fill the tank by the smaller tap alone is 25 hours and by the larger tap alone is 15 hours.

Question 10.
An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11 km/h more than that of the passenger train, find the average speed of the two trains.
Solution:
Let the average speed of the passenger train be x km/h.
∴ Average speed of the express train = (x + 11) km/h
Total distance covered = 132 km
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 22
Comparing equation (1) with ax2 + bx + c = 0, we get a = 1, b = 11, c = -1452
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 23

Question 11.
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.
Solution:
Let the side of the smaller square be x m.
⇒ Perimeter of the smaller square = 4x m
∴ Perimeter of the larger square = (4x + 24) m
⇒ Side of the larger square
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 24
Area of the smaller square = x2 m2
Area of the larger square = (x + 6)2 m2
According to the condition,
x2 + (x + 6)2 = 468
⇒ x2 + x2 + 12x + 36 = 468
⇒ 2x2 + 12x – 432 = 0
⇒ x2 + 6x – 216 = 0 …(1)
[Dividing both sides by 2] Comparing equation (1) with ax2 + bx + c = 0, we get
a = 1, b = 6, c = -216
b2 – 4ac = (6)2 – 4(1)(-216) = 36 + 864 = 900
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 26
But the length of a square cannot be negative,
∴ x ≠ -18 ⇒ x = 12
Length of the smaller square = 12 m
and the length of the larger square = x + 6
= 12+ 6 = 18 m

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 4 Quadratic Equations Ex 4.3. These solutions are based on new NCERT Syllabus.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3
Question 1.
Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
(i) 2x2 – 7x + 3 = 0
(ii) 2x2 + x – 4 = 0
(iii) 4x2 + 4\(\sqrt{3}\)x + 3 = 0
(iv) 2x2 + x + 4 = 0
Solution:
(i) We have, 2x2 – 7x + 3 = 0
Dividing both sides by 2, we get
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 1

(ii) We have 2x2 + x – 4 = 0
Divide both sides by 2, we get
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 2

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 3
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 4

(iv) We have, 2x2 + x + 4 = 0
Dividing both sides by 2, we get
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 5
Since, the square of a number cannot be negative.
∴ There is no real value of x satisfying the given equation.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

Question 2.
Find the roots of the following quadratic equations, using the quadratic formula:
(i) 2x2 – 7x + 3 = 0
(ii) 2x2 + x – 4 = 0
(iii) 4x2 + 4\(\sqrt{3}\)x + 3 = 0
(iv) 2x2 + x + 4 = 0
Solution:
(i) Comparing the given equation with ax2 + bx + c = 0, we get a = 2, b = -7, c = 3
∴ b2 – 4ac = (-7)2 – 4(2)(3) = 49 – 24 = 25 > 0
Since b2 – 4ac > 0, therefore the given equation has real roots, which are given by
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 6
Taking negative sign, x = \(\frac{7-5}{4}=\frac{2}{4}=\frac{1}{2}\)
Thus, the roots of the given equation are 3 and \(\frac{1}{2}\).

(ii) Comparing the given equation with ax2 + bx + c = 0, we get a = 2, b = 1, c = – 4
b2 – 4ac = (1)2 – 4(2)(-4) = 1 + 32 = 33 > 0
Since b2 – 4ac > 0, therefore the given equation has real roots, which are given by
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 7

(iii) Comparing the given equation with
ax2 + bx + c = 0, we get
a = 4, b= 473, c = 3
b2 – 4ac = (473)2 – 4(4)(3)
= (16 × 3) – 48 = 48 – 48 = 0
Since b2 – 4ac = 0, therefore the given equation has real and equal roots, which are given by
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 8

(iv) Comparing the given equation with ax2 + bx + c = 0, we get a = 2, b = 1, c = 4
b2 – 4ac = (1 )2 – 4(2)(4) = 1 – 32 = -31 < 0 Since
b2 – 4ac < 0, therefore the given equation does not have real roots.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

Question 3.
Find the roots of the following equations:
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 9
Solution:
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 10
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 11
Taking negative sign, x = \(\frac{3-1}{2}\)
Thus, the required roots of the given equation are 2 and 1.

Question 4.
The sum of the reciprocals of Rehman’s ages, (in years) 3 years ago and 5 years from now is \(\frac{1}{3}\). Find his present age.
Solution:
Let the present age of Rehman be x years.
3 years ago, Rehman’s age = (x – 3) years
5 years later, Rehman’s age = (x + 5) years
According to the condition,
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 12
⇒ 3(2x + 2) = x2 + 2x – 15
⇒ 6x + 6 = x2 + 2x – 15
⇒ x2 + 2x – 6x – 15 – 6 = 0
⇒ x2 – 4x – 21 = 0 …(1)
Comparing equation (1) with ax2 + bx + c = 0,
we get a = 1, b = -4, c = -21
b2 – 4ac = (-4)2 – 4(1)(-21) = 16 + 84 = 100
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 13
Since, age cannot be negative.
∴ x ≠ -3 ⇒ x = 7
So, the present age of Rehman = 7 years

Question 5.
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.
Solution:
Let Shefali’s marks in Mathematics = x
∴ Marks in English = 30 – x
According to the condition,
(x + 2) × [(30 – x) – 3] = 210
⇒ (x + 2) × (30 – x – 3) = 210
⇒ (x + 2)(- x + 27) = 210
⇒ -x2 + 25x + 54 = 210
⇒ -x2 + 25x + 54 – 210 = 0
⇒ -x2 + 25x – 156 = 0
⇒ x2 – 25x + 156 = 0 …(1)
Comparing equation (1) with ax2 + bx + c = 0, we get a = 1,b = -25, c = 156
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 14
When x = 12, then 30 – x = 30 – 12 = 18 Thus, marks in Mathematics = 13, marks in English = 17 or
Marks in Mathematics = 12, Marks in English = 18.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3

Question 6.
The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
Solution:
Let the shorter side i.e., breadth = x metres
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 15
∴ The longer side i.e., length = (x + 30) metres and diagonal = (x + 60) metres
In a rectangle,
(diagonal)2 = (breadth)2 + (length)2
⇒ (x + 60)2 = x2 + (x + 30)2
⇒ x2 + 120 x + 3600 = x2 + x2 + 60x + 900
⇒ x2 + 120x + 3600 = 2x2 + 60x + 900
⇒ 2x2 – x2 + 60x – 120x + 900 – 3600 = 0
⇒ x2 – 60x – 2700 = 0 …(1)
Comparing equation (1) with ax2 + bx + c = 0, we get a = 1, b = -60, c = -2700
∴ b2 – 4ac = (-60)2 – 4(1)(-2700)
⇒ b2 – 4ac = 3600 + 10800
⇒ b2 – 4ac = 14400
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 16
Since breadth cannot be negative,
x ≠ -30 ⇒ x = 90
∴ x + 30 = 90 + 30 = 120
Thus, the shorter side is 90 m and the longer side is 120 m.

Question 7.
The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.
Solution:
Let the larger number be x.
Since, (smaller number)2 = 8(larger number)
⇒ (smaller number)2 = 8
⇒ smaller number = \(\sqrt{8 x}\)
According to the condition,
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 17
Thus, the smaller number = 12 or -12
Thus, the two numbers are 18 and 12 or 18 and -12.

Question 8.
A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
Solution:
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 18
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 19
Thus, speed of the train is 40 km/hr.

Question 9.
Two water taps together can fill a tank in \(9 \frac{3}{8}\) hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
Solution:
Let the smaller tap fills the tank in x hours
∴ The larger tap fills the tank in (x – 10) hours.
Amount of water flowing through both the taps in one hour
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 20
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 21
[ ∵ Time cannot be negative]
x = 25 ⇒ x – 10 = 25 – 10 = 15
Thus, time taken to fill the tank by the smaller tap alone is 25 hours and by the larger tap alone is 15 hours.

Question 10.
An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11 km/h more than that of the passenger train, find the average speed of the two trains.
Solution:
Let the average speed of the passenger train be x km/h.
∴ Average speed of the express train = (x + 11) km/h
Total distance covered = 132 km
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 22
Comparing equation (1) with ax2 + bx + c = 0, we get a = 1, b = 11, c = -1452
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 23

Question 11.
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.
Solution:
Let the side of the smaller square be x m.
⇒ Perimeter of the smaller square = 4x m
∴ Perimeter of the larger square = (4x + 24) m
⇒ Side of the larger square
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 24
Area of the smaller square = x2 m2
Area of the larger square = (x + 6)2 m2
According to the condition,
x2 + (x + 6)2 = 468
⇒ x2 + x2 + 12x + 36 = 468
⇒ 2x2 + 12x – 432 = 0
⇒ x2 + 6x – 216 = 0 …(1)
[Dividing both sides by 2] Comparing equation (1) with ax2 + bx + c = 0, we get
a = 1, b = 6, c = -216
b2 – 4ac = (6)2 – 4(1)(-216) = 36 + 864 = 900
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.3 26
But the length of a square cannot be negative,
∴ x ≠ -18 ⇒ x = 12
Length of the smaller square = 12 m
and the length of the larger square = x + 6
= 12+ 6 = 18 m

Previous Post

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.2

Next Post

NCERT Class 10th Maths Solutions Chapter 4 द्विघात समीकरण Ex 4.1

Related

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.