NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

by Sudhir
December 4, 2021
in 10th Maths, Class 10th Solutions
Reading Time: 4 mins read
0
NCERT Class 10th Maths Solutions
9
VIEWS
Share on FacebookShare on Twitter

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 4 Quadratic Equations Ex 4.1. These solutions are based on new NCERT Syllabus.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

Question 1.
Check whether the following are quadratic equations:
(i) (x + 1 )2 = 2(x – 3)
(ii) x2 – 2x = (-2)(3 – x)
(iii) (x – 2)(x + 1) = (x – 1 )(x + 3)
(iv) (x – 3)(2x + 1) = x(x + 5)
(v) (2x – 1 )(x – 3) = (x + 5)(x – 1)
(vi) x2 + 3x + 1 = (x – 2)2
(vii) (x + 2)3 = 2x(x2 – 1)
(viii) x3 – 4x2 – x + 1 = (x – 2)3
Solution:
(i) We have, (x + 1)2 = 2(x – 3)
⇒ x2 + 2x + 1 = 2x – 6
⇒ x2 + 2x + 1 – 2x + 6 = 0
⇒ x2 + 7 = 0
Since, x2 + 7 is a quadratic polynomial.
∴ (x + 1)2 = 2(x – 3) is a quadratic equation.

(ii) We have, x2 – 2x = (-2) (3 – x)
⇒ x2 – 2x = – 6 + 2x
⇒ x2 – 2x – 2x + 6 = 0
⇒ x2 – 4x + 6 = 0
Since, x2 – 4x + 6 is a quadratic polynomial
∴ x2 – 2x = (-2)(3 – x) is a quadratic equation.

(iii) We have, (x – 2)(x + 1) = (x – 1) (x + 3)
⇒ x2 – x2 = x2 + 2x3
⇒ x2 – x – 2 – x2 – 2x + 3 = 0
⇒ – 3x +1 = 0
Since, – 3x + 1 is a linear polynomial.
∴ (x – 2)(x + 1) = (x – 1)(x + 3) is not a quadratic equation.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

(iv) We have, (x – 3) (2x + 1) = x(x + 5)
⇒ 2x2 + x – 6x – 3 = x2 + 5x
⇒ 2x2 – 5x – 3 – x2 – 5x = 0
⇒ x2 – 10x – 3 = 0
Since, x2 – 10x – 3 is a quadratic polynomial.
∴ (x – 3)(2x + 1) = x(x + 5) is a quadratic equation.

(v) We have, (2x – 1) (x – 3) = (x + 5) (x – 1)
⇒ 2x2 – 6x – x + 3 = x2 – x + 5x – 5
⇒ 2x2 – 7x + 3 = x2 + 4x – 5
⇒ 2x2 – 7x + 3 – x2 – 4x + 5 = 0
⇒ x2 – 11x + 8 = 0
Since, x2 – 11x + 8 is a quadratic polynomial
∴ (2x – 1)(x – 3) = (x + 5)(x -1) is a quadratic equation.

(vi) We have, x2 + 3x + 1 = (x – 2)2
⇒ x2 + 3x + 1 = x2 – 4x + 4
⇒ x2 + 3x + 1 – x2 + 4x – 4 = 0
⇒ 7x – 3 = 0
Since, 7x – 3 is a linear polynomial.
x2 + 3x + 1 = (x – 2)2 is not a quadratic equation.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

(vii) We have, (x + 2)3 = 2x(x2 – 1)
⇒ x3 + 3x2(2) + 3x(2)2 + (2)3 = 2x3 – 2x
⇒ x3 + 6x2 + 12x + 8 = 2x3 – 2x
⇒ x3 + 6x2 + 12x + 8 – 2x3 + 2x = 0
⇒ -x3 + 6x2 + 14x + 8 = 0
Since, -x3 + 6x2 + 14x + 8 is a polynomial of degree 3.
∴ (x + 2)3= 2x(x2 – 1) is not a quadratic equation.

(viii) We have, x3 – 4x2 – x + 1 = (x – 2)3
⇒ x3 – 4x2 – x + 1 = x3 + 3x2(-2) + 3x(-2)2 + (-2)3
⇒ x3 – 4x2 – x + 1 = x3 – 6x2 + 12x – 8
⇒ x3 – 4x2 – x + 1 – x3 + 6x2 – 12x + 8 = 0 ⇒ 2x2 – 13x + 9 = 0
Since, 2x2 – 13x + 9 is a quadratic polynomial.
∴ x3 – 4x2 – x + 1 = (x – 2)3 is a quadratic equation.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

Question 2.
Represent the following situations in the form of quadratic equations:
(i) The area of a rectangular plot is 528 m2. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
(ii) The product of two consecutive positive integers is 306. We need to find the integers.
(iii) Rohan’s mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan’s present age.
(iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/hr less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.
Solution:
(i) Let the breadth = x metres
∵ Length = 2(Breadth) + 1
∴ Length = (2x + 1)metres
Since, Length × Breadth = Area
∴ (2x + 1) × x = 528 ⇒ 2x2 + x = 528
⇒ 2x2 + x – 528 = 0
Thus, the required quadratic equation is 2x2 + x – 528 = 0

(ii) Let the two consecutive positive integers be x and (x + 1).
∵ Product of two consecutive positive integers = 306
∴ x(x + 1) = 306 ⇒ x2 + x = 306
⇒ x2 + x – 306 = 0
Thus, the required quadratic equation is x2 + x – 306 = 0

(iii) Let the present age of Rohan be x years
∴ Mother’s age = (x + 26) years
After 3 years,
Rohan’s age = (x + 3) years
Mother’s age = [(x + 26) + 3] years
= (x + 29) years
According to the condition,
(x + 3) × (x + 29) = 360
⇒ x2 + 29x + 3x + 87 = 360
⇒ x2 + 29x + 3x + 87 – 360 = 0
⇒ x2 + 32x – 273 = 0
Thus, the required quadratic equation is x2 + 32x – 273 = 0

(iv) Let the speed of the train = u km/hr Distance covered = 480 km Distance
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 1
In second case,
Speed = (u – 8) km/hour
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 2
⇒ 480u – 480(u – 8) = 3u(u – 8)
⇒ 480u – 480u + 3840 = 3u2 – 24u
⇒ 3840 – 3u2 + 24u = 0
⇒ u2 – 8u – 1280 = 0
Thus, the required quadratic equation is u2 – 8u – 1280 = 0

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 4 Quadratic Equations Ex 4.1. These solutions are based on new NCERT Syllabus.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

Question 1.
Check whether the following are quadratic equations:
(i) (x + 1 )2 = 2(x – 3)
(ii) x2 – 2x = (-2)(3 – x)
(iii) (x – 2)(x + 1) = (x – 1 )(x + 3)
(iv) (x – 3)(2x + 1) = x(x + 5)
(v) (2x – 1 )(x – 3) = (x + 5)(x – 1)
(vi) x2 + 3x + 1 = (x – 2)2
(vii) (x + 2)3 = 2x(x2 – 1)
(viii) x3 – 4x2 – x + 1 = (x – 2)3
Solution:
(i) We have, (x + 1)2 = 2(x – 3)
⇒ x2 + 2x + 1 = 2x – 6
⇒ x2 + 2x + 1 – 2x + 6 = 0
⇒ x2 + 7 = 0
Since, x2 + 7 is a quadratic polynomial.
∴ (x + 1)2 = 2(x – 3) is a quadratic equation.

(ii) We have, x2 – 2x = (-2) (3 – x)
⇒ x2 – 2x = – 6 + 2x
⇒ x2 – 2x – 2x + 6 = 0
⇒ x2 – 4x + 6 = 0
Since, x2 – 4x + 6 is a quadratic polynomial
∴ x2 – 2x = (-2)(3 – x) is a quadratic equation.

(iii) We have, (x – 2)(x + 1) = (x – 1) (x + 3)
⇒ x2 – x2 = x2 + 2x3
⇒ x2 – x – 2 – x2 – 2x + 3 = 0
⇒ – 3x +1 = 0
Since, – 3x + 1 is a linear polynomial.
∴ (x – 2)(x + 1) = (x – 1)(x + 3) is not a quadratic equation.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

(iv) We have, (x – 3) (2x + 1) = x(x + 5)
⇒ 2x2 + x – 6x – 3 = x2 + 5x
⇒ 2x2 – 5x – 3 – x2 – 5x = 0
⇒ x2 – 10x – 3 = 0
Since, x2 – 10x – 3 is a quadratic polynomial.
∴ (x – 3)(2x + 1) = x(x + 5) is a quadratic equation.

(v) We have, (2x – 1) (x – 3) = (x + 5) (x – 1)
⇒ 2x2 – 6x – x + 3 = x2 – x + 5x – 5
⇒ 2x2 – 7x + 3 = x2 + 4x – 5
⇒ 2x2 – 7x + 3 – x2 – 4x + 5 = 0
⇒ x2 – 11x + 8 = 0
Since, x2 – 11x + 8 is a quadratic polynomial
∴ (2x – 1)(x – 3) = (x + 5)(x -1) is a quadratic equation.

(vi) We have, x2 + 3x + 1 = (x – 2)2
⇒ x2 + 3x + 1 = x2 – 4x + 4
⇒ x2 + 3x + 1 – x2 + 4x – 4 = 0
⇒ 7x – 3 = 0
Since, 7x – 3 is a linear polynomial.
x2 + 3x + 1 = (x – 2)2 is not a quadratic equation.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

(vii) We have, (x + 2)3 = 2x(x2 – 1)
⇒ x3 + 3x2(2) + 3x(2)2 + (2)3 = 2x3 – 2x
⇒ x3 + 6x2 + 12x + 8 = 2x3 – 2x
⇒ x3 + 6x2 + 12x + 8 – 2x3 + 2x = 0
⇒ -x3 + 6x2 + 14x + 8 = 0
Since, -x3 + 6x2 + 14x + 8 is a polynomial of degree 3.
∴ (x + 2)3= 2x(x2 – 1) is not a quadratic equation.

(viii) We have, x3 – 4x2 – x + 1 = (x – 2)3
⇒ x3 – 4x2 – x + 1 = x3 + 3x2(-2) + 3x(-2)2 + (-2)3
⇒ x3 – 4x2 – x + 1 = x3 – 6x2 + 12x – 8
⇒ x3 – 4x2 – x + 1 – x3 + 6x2 – 12x + 8 = 0 ⇒ 2x2 – 13x + 9 = 0
Since, 2x2 – 13x + 9 is a quadratic polynomial.
∴ x3 – 4x2 – x + 1 = (x – 2)3 is a quadratic equation.

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1

Question 2.
Represent the following situations in the form of quadratic equations:
(i) The area of a rectangular plot is 528 m2. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
(ii) The product of two consecutive positive integers is 306. We need to find the integers.
(iii) Rohan’s mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan’s present age.
(iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/hr less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.
Solution:
(i) Let the breadth = x metres
∵ Length = 2(Breadth) + 1
∴ Length = (2x + 1)metres
Since, Length × Breadth = Area
∴ (2x + 1) × x = 528 ⇒ 2x2 + x = 528
⇒ 2x2 + x – 528 = 0
Thus, the required quadratic equation is 2x2 + x – 528 = 0

(ii) Let the two consecutive positive integers be x and (x + 1).
∵ Product of two consecutive positive integers = 306
∴ x(x + 1) = 306 ⇒ x2 + x = 306
⇒ x2 + x – 306 = 0
Thus, the required quadratic equation is x2 + x – 306 = 0

(iii) Let the present age of Rohan be x years
∴ Mother’s age = (x + 26) years
After 3 years,
Rohan’s age = (x + 3) years
Mother’s age = [(x + 26) + 3] years
= (x + 29) years
According to the condition,
(x + 3) × (x + 29) = 360
⇒ x2 + 29x + 3x + 87 = 360
⇒ x2 + 29x + 3x + 87 – 360 = 0
⇒ x2 + 32x – 273 = 0
Thus, the required quadratic equation is x2 + 32x – 273 = 0

(iv) Let the speed of the train = u km/hr Distance covered = 480 km Distance
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 1
In second case,
Speed = (u – 8) km/hour
NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.1 2
⇒ 480u – 480(u – 8) = 3u(u – 8)
⇒ 480u – 480u + 3840 = 3u2 – 24u
⇒ 3840 – 3u2 + 24u = 0
⇒ u2 – 8u – 1280 = 0
Thus, the required quadratic equation is u2 – 8u – 1280 = 0

Previous Post

NCERT Class 10th Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7

Next Post

NCERT Class 10th Maths Solutions Chapter 4 Quadratic Equations Ex 4.2

Related

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.