NCERT Class Solutions
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers
No Result
View All Result
NCERT Class Solutions
No Result
View All Result
ADVERTISEMENT
Home Class 10th Solutions 10th Maths

NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3

by Sudhir
December 20, 2021
in 10th Maths, Class 10th Solutions
Reading Time: 8 mins read
0
NCERT Class 10th Maths Solutions
25
VIEWS
Share on FacebookShare on Twitter

In this post, we will share NCERT Class 10th Maths Book Solutions Chapter 14 Statistics Ex 14.3. These solutions are based on new NCERT Syllabus.

NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3

Question 1.
The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 1
Solution:
Median:
Let us prepare a cumulative frequency table:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 2
Now, we have N = 68 ⇒ \(\frac{N}{2}=\frac{68}{2}\) = 34
The cumulative frequency just greater than 34 is 42 and it corresponds to the class 125 – 145.
∴ 125 – 145 is the median class.
∴ l = 125, cf = 22, f= 20 and h = 20
Using the formula,
Median = l + \(\left[\frac{\frac{N}{2}-c f}{f}\right] \) × h
= 125 + \(\left[\frac{34-22}{20}\right]\) × 20
= 125 + \(\frac{12}{20}\) × 20 = 125 + 12 = 137 units.
Mean: Let assumed mean, a = 135
∵ Class size, h = 20
∴ ui = \(\frac{x_{i}-a}{h}=\frac{x_{i}-135}{20}\)
Now, we have the following table:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 3
∴ \(\overline{x}\) = a + h × [\(\frac{1}{N}\) Σfiui] = 135 + 20 × \(\frac{7}{68}\)
= 135 + 2.05 = 137.05 units.
Mode:
∵ Class 125 – 145 has the highest frequency i.e., 20.
∴ 125 – 145 is the modal class.
We have: h = 20, l = 125 , f1 = 20, f0 = 13, f2 = 14
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 4
We observe that the three measures are approximately equal.

Question 2.
If the median of the distribution given below is 28.5, find the values of x and y.
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 5
Solution:
Here, we have N = 60
Now, cumulative frequency table is:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 6
Since, median = 28.5 (Given)
∴ Median class is 20 – 30 and l = 20, f = 20, cf = 5 + x, N = 60
∴ l + \(\left[\frac{\frac{N}{2}-c f}{f}\right] \) × h
⇒ 28.5 = 20 + \(\left[\frac{30-(5+x)}{20}\right]\) × 10
⇒ 28.5 = 20 + \(\frac{25-x}{2}\)
⇒ 57 = 40 + 25 – x
⇒ x = 40 + 25 – 57 = 8
Also, 45 + x + y = 60
⇒ 45 + 8 + y = 60
⇒ y = 60 – 45 – 8 = 7.
Thus x = 8, y = 7

NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3

Question 3.
A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 year.
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 7
Solution:
The given table is cumulative frequency distribution. We write the frequency distribution as given below :
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 8
∵ The cumulative frequency just greater than 50 is 78.
∴ The median class is 35 – 40.
Now, \(\frac{N}{2}\) = 50, l = 35, cf = 45, f = 33 and h = 5
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 9
Thus, the median age = 35.76 years.

NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3

Question 4.
The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 10
Find the median length of the leaves.
[Hint: The data needs to be converted to continuous classes for finding the median, since the formula assumes continuous classes. The classes then change to 117.5-126.5,
126.5 – 135.5 ………… 171.5 – 180.5.]
Solution:
After changing the given table as continuous classes we prepare the cumulative frequency table as follows:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 11
The cumulative frequency just above 20 is 29 and it corresponds to the class 144.5 – 153.5.
So, 144.5 – 153.5 is the median class.
We have: \(\frac{N}{2}\) = 20, l = 144.5, f= 12, cf = 17 and h = 9
∴ Median = l + \(\left[\frac{\frac{N}{2}-c f}{f}\right] \) × h
= 144.5 + \(\left[\frac{20-17}{12}\right]\) × 9
= 144.5 + \(\frac{3}{12}\) × 9 = 144.5 + \(\frac{9}{4}\)
= 144.5 + 2.25 = 146.75
Median length of leaves = 146.75 mm.

Question 5.
The following table gives the distribution of the life time of 400 neon lamps:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 12
Find the median life time of a lamp.
Solution:
To compute the median, let us write the cumulative frequency distribution as given below:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 13
Since, the cumulative frequency just greater than 200 is 216.
∴ The median class is 3000-3500 and so l = 3000, cf= 130, f = 86, h = 500
∴ Median = l + \(\left[\frac{\frac{N}{2}-c f}{f}\right] \) × h
= 3000 + \(\left[\frac{200-130}{86}\right]\) × 500
= 3000 + \(\frac{70}{86}\) × 500 = 3000 + \(\frac{35000}{86}\)
= 3000 + 406.98 = 3406.98
Thus, median life time of a lamp = 3406.98 hours.

NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3

Question 6.
100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 14
Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames.
Solution:
Median: The cumulative frequency distribution table is as follows:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 15
Since, the cumulative frequency just greater than 50 is 76.
∴ The class 7-10 is the median class.
We have, \(\frac{N}{2}\) = 50 , f = 7, cf = 36, f = 40 and h = 3
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 16
Mode:
Since the class 7 – 10 has the maximum frequency i.e., 40.
∴ The modal class is 7 – 10.
So, we have l = 7,h = 3, f1 = 40, f0 = 30, f2 = 16
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 17
Thus, the required median = 8.05, mean = 8.32 and mode = 7.88.

Question 7.
The distribution below gives the weights of 30 students of a class. Find the median weight of the students.
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 18
Solution:
We have cumulative frequency table as follows:
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 19
The cumulative frequency just greater than 15 is 19, which corresponds to the class 55 – 60.
So, median class is 55-60 and we have \(\frac{N}{2}\) = 15,
l = 55, f = 6, cf = 13 and h = 5
NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.3 20
Thus, the required median weight of the students = 56.67 kg.

Previous Post

NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.2

Next Post

NCERT Class 10th Maths Solutions Chapter 14 Statistics Ex 14.4

Related

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions
10th Sanskrit

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized

Recent

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 4 चित्रवर्णनम्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 3 अनुच्छेदलेखमन्

NCERT Class 10th Sanskrit Solutions

Abhyasvan Bhav Sanskrit Class 10 Chapter 2 पत्रलेखनम्

NCERT Class Solutions

We provide NCERT Solutions

NCERT Class Solutions App Play Store

Follow Us

Browse By Category

  • Books
    • Class 10 Books PDF
  • Class 10th Solutions
    • 10th English
    • 10th Hindi
    • 10th Maths
    • 10th Sanskrit
    • 10th Science
    • 10th Social Science
  • Class 9th Solutions
    • 9th Maths
    • 9th Science
    • 9th Social Science
  • MP Board
  • Uncategorized
  • Write for Us
  • Privacy Policy
  • Contact Us

© 2022 NCERT Class Solutions .

No Result
View All Result
  • Home
  • 9th Solutions
    • Maths Solutions
    • Science Solutions
    • Social Science Solutions
  • 10th Solutions
    • Science Solutions
    • Maths Solutions
    • Social Science Solutions
    • English Solutions
    • Hindi Solutions
    • Sanskrit Solutions
  • NCERT Books
    • Class 10 Books PDF
    • Class 9 Books PDF
  • About Us
    • Write for Us
    • Contact Us
    • Privacy Policy
    • Disclaimer
  • MP Board
    • MP Board Solutions
    • Previous Year Papers

© 2022 NCERT Class Solutions .

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.